
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9756340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of surge-induced synchronized switch harvesting on inductor strategy. Smart Materials and Structures, 2021, 30, 065014.	3.5	0
2	Performance evaluation of a novel piezoelectric-based high-frequency surge-inducing synchronized switching strategy for micro-scale energy harvesting. Mechanical Systems and Signal Processing, 2019, 117, 361-382.	8.0	12
3	Improvement of micro-jitter energy harvesting efficiency of piezoelectric-based surge-inducing optimal switching strategy. Sensors and Actuators A: Physical, 2018, 281, 55-66.	4.1	5
4	Optimal configuration and combination of piezoelectric transducer and inductor for synchronized-switch-damping-on-an-inductor technique. Journal of Intelligent Material Systems and Structures, 2017, 28, 888-906.	2.5	2
5	Energy Harvesting Using an Analog Circuit under Multimodal Vibration. Smart Materials Research, 2013, 2013, 1-6.	0.5	3
6	Comparison of Analog and Digital Self-Powered Systems in Multimodal Vibration Suppression. Smart Materials Research, 2012, 2012, 1-9.	0.5	2
7	Reliable and Evolvable Vibration Suppression by Self-Powered Digital Vibration Control. Journal of Vibration and Acoustics, Transactions of the ASME, 2012, 134, .	1.6	7
8	Development of a Self-Powered Digital System for Vibration Control. Journal of System Design and Dynamics, 2012, 6, 583-596.	0.3	0
9	Innovative Digital Self-Powered Autonomous System for Multimodal Vibration Suppression. AIAA Journal, 2012, 50, 2004-2011.	2.6	23
10	Eco-Generation from Wing Flutter of Hypersonic Wind using Piezoelectric Switching. Journal of Wind Engineering, 2012, 37, 35-42.	0.2	0
11	New Invention: Digital Self-Powered Autonomous System for Sophisticated Semi-Active Vibration Suppression. , 2011, , .		0
12	Assessment of Electrical Influence of Multiple Piezoelectric Transducers' Connection on Actual Satellite Vibration Suppression. Smart Materials Research, 2011, 2011, 1-8.	0.5	8
13	Proposal of Vibration Suppression Model Using Thin Film with Viscous Lamina. Journal of the Japan Society for Aeronautical and Space Sciences, 2011, 59, 55-60.	0.1	0
14	Performance evaluation of energy recycling semi-active vibration suppression method with multi piezoelectric transducers. , 2010, , .		1
15	Fuselage panel noise attenuation by piezoelectric switching control. Smart Materials and Structures, 2010, 19, 085022.	3.5	7
16	Wrinkling Analysis Using Improved Dynamic Relaxation Method. AIAA Journal, 2009, 47, 1601-1607.	2.6	4
17	Evaluation of Adhesive Bonding Structure in Cryogenic Composite Tank Based on Fracture Mechanics. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 52, 36-46.	0.7	2
18	Performance of Simple and Sophisticated Control in Energy-recycling Semi-active Vibration Suppression. JVC/Journal of Vibration and Control, 2008, 14, 417-436.	2.6	17

#	Article	IF	CITATIONS
19	Using Tuned Electrical Resonance to Enhance Bang-Bang Vibration Control. AIAA Journal, 2007, 45, 497-504.	2.6	19
20	Observability of Self-Sensing System Using Extended Kalman Filter. AIAA Journal, 2007, 45, 306-308.	2.6	4
21	Comprehensive Assessment of Semi-Active Vibration Suppression Including Energy Analysis. Journal of Vibration and Acoustics, Transactions of the ASME, 2007, 129, 84-93.	1.6	30
22	HIGH-POWERED NON-LINEAR SHOCK DAMPER USING ER FLUID. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 597-602.	0.4	0
23	Optimization of Piezoelectric Laminated Composites Using Extended Lamination Parameters. , 2007, , .		0
24	Wrinkling Analysis Using Improved Dynamic Relaxation Method. , 2007, , .		0
25	A self-sensing method for switching vibration suppression with a piezoelectric actuator. Smart Materials and Structures, 2007, 16, 455-461.	3.5	40
26	Numerical Analysis of Powerful Shock Absorber Utilizing Particle-Dispersion ER Fluid. Transactions of the Japan Society for Aeronautical and Space Sciences, 2007, 49, 203-210.	0.7	5
27	Novel Attenuation Method of Transmitted Sound into Rocket Faring Using Energy-Harvesting Technique. , 2006, , .		1
28	Low energy dissipation electric circuit for energy harvesting. Smart Materials and Structures, 2006, 15, 1493-1498.	3.5	71
29	Improved self-sensing method for semi-active vibration suppression. , 2006, 6169, 34.		1
30	Optimum Designs of Piezoelectric Fibers. , 2006, , .		0
31	Investigation of performance in suppressing various vibrations with energy-recycling semi-active method. Acta Astronautica, 2006, 58, 506-514.	3.2	14
32	New approach to semi-active vibration isolation to improve the pointing performance of observation satellites. Smart Materials and Structures, 2006, 15, 342-350.	3.5	27
33	Novel Approach to Self-Sensing Actuation for Semi-Active Vibration Suppression. AIAA Journal, 2006, 44, 1445-1453.	2.6	30
34	Behavior of Piezoelectric Transducer on Energy-Recycling Semiactive Vibration Suppression. AIAA Journal, 2006, 44, 411-413.	2.6	25
35	Self-Sensing Actuator for Semi-Active Vibration Suppression. , 2005, , .		0
36	Low Energy-Consumption Hybrid Vibration Suppression Based on Energy-Recycling Approach. AIAA Journal, 2005, 43, 1706-1715.	2.6	42

JUNJIRO ONODA

#	Article	IF	CITATIONS
37	"Sliding-Mode-Control"-Based Semi-Active Vibration Control with Energy-Recycling Approach. Journal of the Japan Society for Aeronautical and Space Sciences, 2005, 53, 343-350.	0.1	2
38	Semi-Active Vibration Suppression of Beam Structures Based on Energy-Recycling Method. Transactions of the Japan Society for Aeronautical and Space Sciences, 2004, 47, 167-174.	0.7	9
39	Semiactive Isolator With Liquid-Crystal Type ER Fluid for Momentum-Wheel Vibration Isolation. Journal of Vibration and Acoustics, Transactions of the ASME, 2004, 126, 272-277.	1.6	22
40	A Preliminary Investigation of a Spin-Stabilized Solar Sail. , 2004, , .		5
41	Energy-recycling Semi-active Method for Vibration Suppression with Piezoelectric Transducers. , 2003, , \cdot		Ο
42	Energy-Recycling Semi-Active Method for Vibration Suppression with Piezoelectric Transducers. AIAA Journal, 2003, 41, 711-719.	2.6	97
43	Numerical Study on a Semi-Active Isolator to Enhance Pointing Performance of Optical Equipment On-Board Satellites Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 45, 255-260.	0.7	2
44	An experimental study of a semiactive magneto-rheological fluid variable damper for vibration suppression of truss structures. Smart Materials and Structures, 2002, 11, 156-162.	3.5	58
45	Characteristics of Carpenter Tape Hinge Made of TiNi Alloy. , 2002, , .		5
46	Energy Recycle Semi-Active Vibration Suppression by Voice Coil Transducers. , 2002, , .		3
47	Estimation of Separation Shock of the Marman Clamp System by Using a Simple Band-Mass Model Transactions of the Japan Society for Aeronautical and Space Sciences, 2002, 45, 53-60.	0.7	17
48	SIMULTANEOUS OPTIMIZATION OF PIEZOELECTRIC ACTUATOR PLACEMENT AND FEEDBACK FOR VIBRATION SUPPRESSION. Acta Astronautica, 2002, 50, 335-341.	3.2	47
49	Simultaneous Optimization of Intelligent Structure and Feedback Gains for Flexible Structure Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 536-541.	0.4	0
50	Improved Electrorheological-Fluid Variable Damper Designed for Semiactive Vibration Suppression. AIAA Journal, 2000, 38, 1736-1741.	2.6	13
51	Characteristics of a Liquid-Crystal Type ER-Fluid Variable Damper for Semiactive Vibration Suppression. Journal of Vibration and Acoustics, Transactions of the ASME, 2000, 122, 412-419.	1.6	13
52	Integrated optimization of viscoelastic structures and active controllers for flexible space structures. , 2000, , .		0
53	An enhancement of ER-fluid variable damper for semiactive vibration suppression. , 1998, , .		1
54	A study for simultaneous optimization of a viscoelastic structure and active controller. , 1998, , .		0

#	Article	IF	CITATIONS
55	Semiactive Vibration Suppression with Electrorheological-Fluid Dampers. AIAA Journal, 1997, 35, 1844-1852.	2.6	38
56	Symmetric Motion Control for Adaptive Structure Based Construction of Large Space Structures. Journal of Spacecraft and Rockets, 1997, 34, 118-124.	1.9	1
57	Two-stage strategy for simultaneous slewing and vibration suppression of flexible structures. Computer Methods in Applied Mechanics and Engineering, 1997, 147, 357-367.	6.6	2
58	Semi-active vibration suppression of truss structures by electro-rheological fluid. Acta Astronautica, 1997, 40, 771-779.	3.2	10
59	Experimental study on damping capability of thin film with viscous lamina. , 1996, , .		4
60	Semiactive vibration suppression of truss structures by ER fluid damper. , 1996, , .		0
61	Two-dimensional deployable hexapod truss. Journal of Spacecraft and Rockets, 1996, 33, 416-421.	1.9	13
62	Partitioned model reduction for large space structural control problem. AIAA Journal, 1996, 34, 2149-2153.	2.6	2
63	Semiactive vibration suppression by variable-damping members. AIAA Journal, 1996, 34, 355-361.	2.6	24
64	Alternative control logic for type-II variable-stiffness system. AIAA Journal, 1996, 34, 207-209.	2.6	18
65	Simultaneous optimization of structural stiffness/passive damping/active controller for flexible space structures. , 1996, , .		0
66	Passive vibration suppression using thin tape with viscous lamina. , 1995, , .		0
67	Actuator placement with failure consideration for static shape control of truss structures. AIAA Journal, 1995, 33, 1161-1163.	2.6	7
68	Passive damping of truss vibration using preloaded joint backlash. AIAA Journal, 1995, 33, 1335-1341.	2.6	18
69	New gravity compensation method by dither for low-g simulation. Journal of Spacecraft and Rockets, 1995, 32, 364-369.	1.9	12
70	Two-dimensionally deployable hexapod truss. , 1995, , .		0
71	Semiactive vibration suppression of truss structures by Coulomb friction. Journal of Spacecraft and Rockets, 1994, 31, 67-74.	1.9	20
72	Advanced control law for vibration suppression with a TYPE-II variable stiffness member. , 1994, , .		0

#	Article	IF	CITATIONS
73	Actuator Placement Optimization by Genetic and Improved Simulated Annealing Algorithms. AIAA Journal, 1993, 31, 1167-1169.	2.6	83
74	Active, Passive, and Semiactive Vibration Suppression by Stiffness Variation. AIAA Journal, 1992, 30, 2922-2929.	2.6	41
75	Active, passive and semi-active vibration suppression by stiffness variation. , 1992, , .		2
76	Semi-active vibration suppression of truss structures by Coulomb friction. , 1992, , .		1
77	Vibration Suppression by Variable-Stiffness Members. AIAA Journal, 1991, 29, 977-983.	2.6	124
78	Integrated direct optimization of structure/regulator/observer for large flexible spacecraft. AIAA Journal, 1990, 28, 1677-1685.	2.6	22
79	Effects of atmospheric density gradient on control of tethered subsatellites. Journal of Guidance, Control, and Dynamics, 1989, 12, 431-433.	2.8	1
80	Integrated direct optimization of structure/regulator/observer for large flexible spacecraft. , 1989, , .		6
81	Development status of the MU upper stage motors. Acta Astronautica, 1988, 18, 209-215.	3.2	1
82	Tethered subsatellite swinging from atmospheric gradients. Journal of Guidance, Control, and Dynamics, 1988, 11, 477-479.	2.8	22
83	Two-dimensional deployable truss structures for space applications. Journal of Spacecraft and Rockets, 1988, 25, 109-116.	1.9	18
84	Alternative methods to fold/deploy tetrahedral or pentahedral truss platforms. Journal of Spacecraft and Rockets, 1987, 24, 183-186.	1.9	2
85	An approach to structure/control simultaneous optimization for largeflexible spacecraft. AIAA Journal, 1987, 25, 1133-1138.	2.6	205
86	Some Advances in Energy Recycling Semiactive Vibration Suppression. Advances in Science and Technology, 0, , .	0.2	8