Jean-Francois Lahitte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/975608/publications.pdf

Version: 2024-02-01

623734 580821 29 644 14 25 citations g-index h-index papers 30 30 30 989 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Remarkable catalytic activity of polymeric membranes containing gel-trapped palladium nanoparticles for hydrogenation reactions. Catalysis Today, 2021, 364, 263-269.	4.4	7
2	Effects of some ion-specific properties in the electrocoagulation process with aluminum electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127507.	4.7	10
3	Development of double porous poly (Î μ - caprolactone)/chitosan polymer as tissue engineering scaffold. Materials Science and Engineering C, 2020, 107, 110257.	7. 3	16
4	Double porous poly (ƕcaprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110493.	5.0	9
5	Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance. Tissue Engineering - Part A, 2019, 25, 1635-1645.	3.1	5
6	Influence of the Counterion Nature on the Stability Sequence of Hydrophobic Latex Particles. Journal of Physical Chemistry B, 2019, 123, 3859-3865.	2.6	7
7	Catalytic membrane reactor for Suzukiâ€Miyaura Câ^'C crossâ€coupling: Explanation for its high efficiency via modeling. AICHE Journal, 2017, 63, 698-704.	3.6	16
8	Preparation of multifunctional hollow fiber nanofiltration membranes by dynamic assembly of weak polyelectrolyte multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 286-295.	4.7	27
9	Development of Flow-Through Polymeric Membrane Reactor for Liquid Phase Reactions: Experimental Investigation and Mathematical Modeling. International Journal of Chemical Engineering, 2017, 2017, 1-8.	2.4	5
10	Hybrid Catalytic Membranes: Tunable and Versatile Materials for Fine Chemistry Applications. Materials Today: Proceedings, 2016, 3, 419-423.	1.8	5
11	Membrane modules for CO 2 capture based on PVDF hollow fibers with ionic liquids immobilized. Journal of Membrane Science, 2016, 498, 218-226.	8.2	41
12	High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction. Journal of Membrane Science, 2015, 492, 331-339.	8.2	57
13	Polyethersulfone hollow fiber modified with poly(styrenesulfonate) and Pd nanoparticles for catalytic reaction. European Physical Journal: Special Topics, 2015, 224, 1843-1848.	2.6	5
14	Influence of UV grafting conditions and gel formation on the loading and stabilization of palladium nanoparticles in photografted polyethersulfone membrane for catalytic reactions. Journal of Membrane Science, 2014, 455, 55-63.	8.2	45
15	Chemically modified polysulfones for molecular imprinting. Synthesis and complexation with a fluorescent model template. Reactive and Functional Polymers, 2013, 73, 531-539.	4.1	2
16	Wet Air Oxidation of Formic Acid Using Nanoparticle-Modified Polysulfone Hollow Fibers as Gas–Liquid Contactors. ACS Applied Materials & Diterfaces, 2012, 4, 1440-1448.	8.0	5
17	Towards green membranes: preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. International Journal of Sustainable Engineering, 2011, 4, 75-83.	3.5	63
18	Development of polymeric hollow fiber membranes containing catalytic metal nanoparticles. Catalysis Today, 2010, 156, 181-186.	4.4	76

#	Article	IF	CITATIONS
19	Catalytic hollow fiber membranes prepared using layer-by-layer adsorption of polyelectrolytes and metal nanoparticles. Catalysis Today, 2010, 156, 100-106.	4.4	77
20	Use of Lanthanide-Grafted Inorganic Nanoparticles as Effective Contrast Agents for Cellular Uptake Imaging. Bioconjugate Chemistry, 2007, 18, 1053-1063.	3.6	66
21	Design of new poly(ethylene) based materials by coordination (co)polymerization of macromonomers with ethylene. Polymers for Advanced Technologies, 2006, 17, 621-624.	3.2	3
22	Membrane synthesis by microemulsion polymerisation stabilised by commercial non-ionic surfactants. Desalination, 2006, 199, 127-129.	8.2	2
23	Design of new styrene enriched polyethylenes via coordination copolymerization of ethylene with mono- or $\hat{l}\pm$, \hat{l} %-difunctional polystyrene macromonomers. Polymer, 2006, 47, 1063-1072.	3.8	15
24	Homopolymerization ofi‰-Styryl-Polystyrene Macromonomers in the Presence of CpTiF3/MAO. Macromolecular Rapid Communications, 2004, 25, 1010-1014.	3.9	7
25	Macromonomers and coordination polymerization. Macromolecular Symposia, 2004, 213, 253-264.	0.7	2
26	Transition Metal Based Homopolymerisation of Macromonomers. ChemInform, 2003, 34, no.	0.0	0
27	Macromonomers as well-defined building blocks in macromolecular engineering. Macromolecular Symposia, 2002, 183, 159-164.	0.7	15
28	Homo- and Copolymerization of -Functional Polystyrene Macromonomers via Coordination Polymerization. Macromolecular Chemistry and Physics, 2002, 203, 2583-2589.	2.2	35
29	Transition metal-based homopolymerisation of macromonomers. Comptes Rendus Chimie, 2002, 5, 225-234.	0.5	19