
Jan Miljkovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9755920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO–TRPA1–CGRP signalling pathway. Nature Communications, 2014, 5, 4381.	12.8	324
2	Chemical Characterization of the Smallest <i>S</i> -Nitrosothiol, HSNO; Cellular Cross-talk of H ₂ S and <i>S</i> -Nitrosothiols. Journal of the American Chemical Society, 2012, 134, 12016-12027.	13.7	307
3	Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metabolism, 2019, 30, 1152-1170.e13.	16.2	236
4	Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chemical Science, 2016, 7, 3414-3426.	7.4	175
5	Generation of HNO and HSNO from Nitrite by Hemeâ€Iron atalyzed Metabolism with H ₂ S. Angewandte Chemie - International Edition, 2013, 52, 12061-12064.	13.8	124
6	Biochemical insight into physiological effects of H2S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite. Biochemical Journal, 2012, 441, 609-621.	3.7	99
7	Working with "H2Sâ€: Facts and apparent artifacts. Nitric Oxide - Biology and Chemistry, 2014, 41, 85-96.	2.7	95
8	Nitric Oxide Is Reduced to HNO by Proton-Coupled Nucleophilic Attack by Ascorbate, Tyrosine, and Other Alcohols. A New Route to HNO in Biological Media?. Journal of the American Chemical Society, 2015, 137, 4720-4727.	13.7	79
9	Cytochrome <i>c</i> Reduction by H ₂ S Potentiates Sulfide Signaling. ACS Chemical Biology, 2018, 13, 2300-2307.	3.4	76
10	Cystathionine γ-Lyase–Produced Hydrogen Sulfide Controls Endothelial NO Bioavailability and Blood Pressure. Hypertension, 2018, 71, 1210-1217.	2.7	58
11	Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism. ELife, 2021, 10, .	6.0	44
12	Overexpression of Cystathionine γ-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3. Molecular Medicine, 2015, 21, 758-768.	4.4	37
13	Spatiotemporal regulation of hydrogen sulfide signaling in the kidney. Redox Biology, 2021, 43, 101961.	9.0	23
14	Amphiphilic Pentaazamacrocyclic Manganese Superoxide Dismutase Mimetics. Inorganic Chemistry, 2014, 53, 1009-1020.	4.0	21
15	HNO/Thiol Biology as a Therapeutic Target. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 335-375.	0.4	3