
Maria Jose Valenzuela Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/975505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles. Applied Physics Letters, 2007, 90, 081913.	1.5	136
2	Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels, 2014, 7, 63.	6.2	134
3	FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT - Food Science and Technology, 2019, 99, 166-172.	2.5	109
4	Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses. Journal of Applied Physics, 2001, 90, 3308-3313.	1.1	100
5	Quantification of Extra-virgin Olive Oil Adulteration with Soybean Oil: a Comparative Study of NIR, MIR, and Raman Spectroscopy Associated with Chemometric Approaches. Food Analytical Methods, 2015, 8, 2339-2346.	1.3	85
6	On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses. Applied Physics Letters, 1999, 74, 908-910.	1.5	81
7	Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications. Journal of Applied Physics, 1999, 85, 2502-2507.	1.1	80
8	Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses. Journal of Non-Crystalline Solids, 2006, 352, 3628-3632.	1.5	68
9	Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20 K. Physical Review B, 2005, 71, .	1.1	56
10	Thermo-optical properties of silver and gold nanofluids. Journal of Thermal Analysis and Calorimetry, 2013, 114, 557-564.	2.0	50
11	Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels, 2013, 6, 4.	6.2	49
12	Laser emission of a Nd-doped mixed tellurite and zinc oxide glass. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1590.	0.9	48
13	Eu3+ emission in phosphate glasses with high UV transparency. Journal of Luminescence, 2014, 154, 294-297.	1.5	47
14	Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network. Journal of Dairy Science, 2015, 98, 3559-3567.	1.4	47
15	The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses. Optical Materials, 2016, 58, 84-88.	1.7	47
16	Evaluation of butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies and multivariate analyses. LWT - Food Science and Technology, 2019, 107, 1-8.	2.5	47
17	Eu3+ photoluminescence enhancement due to thermal energy transfer in Eu2O3-doped SiO2–B2O3–PbO2 glasses system. Journal of Luminescence, 2011, 131, 850-855.	1.5	43
18	Laser performance parameters of Yb3+ doped UV-transparent phosphate glasses. Chemical Physics Letters, 2014, 592, 164-169.	1.2	41

#	Article	IF	CITATIONS
19	Thermal lens study of the OH[sup â~'] influence on the fluorescence efficiency of Yb[sup 3+]-doped phosphate glasses. Applied Physics Letters, 2005, 86, 071911.	1.5	38
20	Control of spectroscopic fluorescence parameters of Nd3+ ions as a function of concentration in a SiO2–Na2O–Al2O3–B2O3 glass system. Chemical Physics Letters, 2011, 508, 125-129.	1.2	37
21	Cooperative luminescence in Yb3Â-doped phosphate glasses. Journal of Physics Condensed Matter, 2003, 15, 4877-4887.	0.7	35
22	Multi-scale study of the integrated use of the carbohydrate fractions of sugarcane bagasse for ethanol and xylitol production. Renewable Energy, 2021, 163, 1343-1355.	4.3	35
23	Energy transfer process and radiative properties of 1.06 µm emission in Nd3+ doped TeO2-ZnO-Na2O glasses. Journal of Luminescence, 2018, 196, 399-405.	1.5	34
24	FTIR-ATR spectroscopy as a tool for the rapid detection of adulterations in butter cheeses. LWT - Food Science and Technology, 2019, 109, 63-69.	2.5	34
25	Lactobacillus kefiranofaciens and Lactobacillus satsumensis isolated from Brazilian kefir grains produce alpha-glucans that are potentially suitable for food applications. LWT - Food Science and Technology, 2016, 72, 390-398.	2.5	29
26	Thermal and Optical Properties of \${hbox {Yb}}^{3+}\$- and \${hbox {Nd}}^{3+}\$-Doped Phosphate Glasses Determined by Thermal Lens Technique. IEEE Journal of Quantum Electronics, 2007, 43, 751-757.	1.0	28
27	Ab initio calculations of some electronic and elastic properties for SiC polytypes. Intermetallics, 2008, 16, 1040-1042.	1.8	28
28	Thermo-optical properties of tellurite glasses doped with Eu ³⁺ and Au nanoparticles. Journal Physics D: Applied Physics, 2009, 42, 155404.	1.3	28
29	Capillary zone electrophoresis for fatty acids with chemometrics for the determination of milk adulteration by whey addition. Food Chemistry, 2016, 213, 647-653.	4.2	26
30	Synthesis and optical characterization of poly(styrene sulfonate) films doped with Nd(III). Chemical Physics, 2006, 326, 514-520.	0.9	25
31	Raman Spectroscopy of SiO2–Na2O–Al2O3–B2O3 glass doped with Nd3+ and CdS nanocrystals. Journal of Alloys and Compounds, 2014, 582, 730-733.	2.8	25
32	Optical properties of undoped NdTaO 4 , ErTaO 4 and YbTaO 4 ceramics. Journal of Luminescence, 2016, 179, 146-153.	1.5	25
33	Detection of adulteration of goat milk powder with bovine milk powder by front-face and time resolved fluorescence. Food Control, 2017, 81, 168-172.	2.8	24
34	Energy transfer processes and heat generation in Yb[sup 3+]-doped phosphate glasses. Journal of Applied Physics, 2006, 100, 113103.	1.1	23
35	Effect of Ag nanoparticles on the radiative properties of tellurite glasses doped with Er3+, Yb3+ and Tm3+ ions. Optical Materials, 2014, 37, 281-286.	1.7	23
36	Energy transfer between CdS nanocrystals and neodymium ions embedded in vitreous substrates. Optics Letters, 2010, 35, 1329.	1.7	22

#	Article	IF	CITATIONS
37	Optical and spectroscopic properties of soda lime alumino-silicate glasses doped with erbium and silver. Optical Materials, 2011, 33, 1995-1998.	1.7	22
38	Thermal characterization of iron phosphate glasses for nuclear waste disposal. Optical Materials, 2011, 33, 1975-1979.	1.7	21
39	Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix. Journal of Luminescence, 2011, 131, 1401-1406.	1.5	21
40	Visible photoluminescence fromEr3+ions inaâ^'SiNalloys. Physical Review B, 1999, 59, 10091-10098.	1.1	20
41	Erbium 1.55μm luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses. Materials Chemistry and Physics, 2019, 224, 73-78.	2.0	20
42	Influence of crystal field potential on the spectroscopic parameters of SiO2·B2O3·PbO glass doped with Nd2O3. Journal of Luminescence, 2011, 131, 1029-1036.	1.5	19
43	Vibrational spectroscopy for milk fat quantification: line shape analysis of the Raman and infrared spectra. Journal of Raman Spectroscopy, 2016, 47, 692-698.	1.2	19
44	Long-Term Ripening Evaluation of Ewes' Cheeses by Fourier-Transformed Infrared Spectroscopy under Real Industrial Conditions. Journal of Spectroscopy, 2018, 2018, 1-9.	0.6	19
45	Origin geographical classification of green coffee beans (Coffea arabica L.) produced in different regions of the Minas Gerais state by FT-MIR and chemometric. Current Research in Food Science, 2022, 5, 298-305.	2.7	18
46	Thermal characterization of glasses prepared from simulated compositions of lunar soil JSC-1A. Journal of Non-Crystalline Solids, 2013, 359, 56-59.	1.5	17
47	Detection of Veterinary Antimicrobial Residues in Milk through Near-Infrared Absorption Spectroscopy. Journal of Spectroscopy, 2018, 2018, 1-6.	0.6	17
48	Temperature coefficient of optical path of tellurite glasses doped with gold nanoparticles. Optical Materials, 2011, 34, 239-243.	1.7	16
49	Influence of crystalline structure on the luminescence properties of terbium orthotantalates. Journal of Luminescence, 2013, 138, 133-137.	1.5	16
50	Optical and structural properties of laser annealed Er-doped amorphous silicon thin films. Journal of Applied Physics, 1999, 86, 701-703.	1.1	15
51	Thermal-lens and photo-acoustic methods for the determination of SiC thermal properties. Microelectronics Journal, 2005, 36, 977-980.	1.1	15
52	Judd–Ofelt analysis of Nd3+ ions in poly(styrene sulfonate) films. Journal of Non-Crystalline Solids, 2006, 352, 5296-5300.	1.5	14
53	Optical excitation of Er3+ ions in a-SiN alloys. Journal of Applied Physics, 1999, 86, 338-341.	1.1	13
54	Characterization and detection of adulterated whey protein supplements using stationary and time-resolved fluorescence spectroscopy. LWT - Food Science and Technology, 2018, 97, 180-186.	2.5	13

#	Article	IF	CITATIONS
55	Thermal diffusivity of a SNAB glass system doped with CdS nanocrystals and Nd3+. Chemical Physics Letters, 2011, 504, 67-70.	1.2	12
56	Control of growth and the processes of energy transfer from CdSe quantum dots for Nd3+ ions in a vitreous system: Thermal annealing time. Applied Physics Letters, 2012, 101, 121903.	1.5	12
57	Optical properties of oxide glasses with semiconductor nanoparticles co-doped with rare earth ions. Chemical Physics Letters, 2013, 588, 188-192.	1.2	12
58	Thermal and structural analysis of germanate glass and thin films co-doped with silver nanoparticles and rare earth ions with insights from visible and Raman spectroscopy. Vibrational Spectroscopy, 2016, 87, 143-148.	1.2	12
59	Thermal analyzes of phosphate glasses doped with Yb 3+ and ZnTe nanocrystals. Journal of Luminescence, 2016, 169, 353-358.	1.5	12
60	Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses. Journal of Non-Crystalline Solids, 2005, 351, 2042-2046.	1.5	11
61	Thermo-optical parameters of tellurite glasses doped with Yb3+. Journal Physics D: Applied Physics, 2007, 40, 4073-4077.	1.3	11
62	Doped tellurite glasses: Extending nearâ€infrared emission for nearâ€2.0â€î¼m amplifiers. International Journal of Applied Glass Science, 2017, 8, 216-225.	1.0	11
63	Quantification of whole ultra high temperature UHT milk waste as a function of packages type and design. Journal of Cleaner Production, 2017, 153, 483-490.	4.6	11
64	Raman Spectroscopy as a fast tool for whey quantification in raw milk. Vibrational Spectroscopy, 2020, 111, 103150.	1.2	11
65	Spectroscopic investigation of 2.0 µm emission in Ho3+-doped fluoroindate glasses. Journal Physics D: Applied Physics, 2006, 39, 3230-3234.	1.3	10
66	Optical and thermal investigation of GeO2–PbO thin films doped with Au and Ag nanoparticles. Thin Solid Films, 2012, 520, 2667-2671.	0.8	10
67	Thermal lens study of PbO–Bi2O3–Ga2O3–BaO glasses doped with Yb3+. Journal of Non-Crystalline Solids, 2006, 352, 3647-3652.	1.5	9
68	Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique. Optical Materials, 2013, 35, 1724-1727.	1.7	9
69	Time resolved fluorescence of milk powders – A pilot study. International Dairy Journal, 2017, 64, 31-36.	1.5	9
70	Results from portable and of low cost equipment developed for detection of milk adulterations. Food Science and Technology, 2017, 37, 38-41.	0.8	9
71	Quantum efficiency of Yb 3+ –ZnTe co-doped phosphate glass system. Journal of Luminescence, 2016, 176, 381-386.	1.5	7
72	Thermal lens investigation in amorphous SiN. Applied Surface Science, 2008, 255, 698-700.	3.1	6

#	Article	IF	CITATIONS
73	Time-resolved interband transitions in periodic multilayer δ-doped systems. Physical Review B, 1998, 58, 7205-7209.	1.1	5
74	Photon avalanche upconversion in Tm3+-doped fluoroindogallate glasses. Journal of Physics Condensed Matter, 2002, 14, 5651-5663.	0.7	5
75	Effect of Na2O concentration on the lifetime of Er3+-doped sodium silicate glass. RSC Advances, 2013, 3, 24298.	1.7	5
76	High resolution raman spectroscopy of raw and UHT bovine and Goat milk. Measurement Food, 2022, 6, 100029.	0.8	5
77	Fano interference in periodic GaAs doping multilayers. Physical Review B, 1998, 57, R15104-R15107.	1.1	4
78	Looping mechanism in Er-doped fluoroindogallate glasses. Journal of Applied Physics, 2000, 87, 8264-8267.	1.1	4
79	Reverse saturable absorption in Er+3 doped systems. Journal of Non-Crystalline Solids, 2004, 348, 90-93.	1.5	4
80	Compositional influence on spectroscopy properties of Yb3+-doped tellurite glasses. , 2006, , .		4
81	Luminescent Glass for Lasers and Solar Concentrators. , 0, , .		4
82	Photoreflectance and time-resolved photoreflectance in delta-doped superlattices. Journal of Applied Physics, 1998, 83, 2806-2811.	1.1	3
83	Time resolved visible emission from Er3+-doped SiN thin films. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 137-138.	1.3	3
84	Unprecedented multiphonon vibronic transitions of erbium ions on copper nanoparticle-containing tellurite glasses. Physical Chemistry Chemical Physics, 2020, 22, 13118-13122.	1.3	3
85	Band gap renormalization in resonant Raman spectra of multilayer systems. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 180-183.	1.3	2
86	<title>Refractive index changes in solid-state laser materials</title> ., 2006, , .		2
87	Resonant electronic Raman scattering: A BCS-like system. Physical Review B, 2016, 93, .	1.1	2
88	Improved emission cross-section of erbium and demonstration of energy transfer in As ₂ Se ₃ thin films. Journal of Materials Chemistry C, 2022, 10, 8740-8749.	2.7	2
89	Electronic excitations in narrow quantum wells via intersubband Raman scattering: Theoretical considerations. Vibrational Spectroscopy, 2016, 87, 193-198.	1.2	1
90	Surface-Enhanced Fluorescence of Erbium Ions on Copper Nanoparticles Containing Tellurite Glasses. Plasmonics, 2021, 16, 139-145.	1.8	1

#	Article	IF	CITATIONS
91	CARACTERIZAÇÃ∱O PROTEICA DE LEITE PASTEURIZADO, SORO DE QUEIJO E SUAS MISTURAS PELO USO DO ANALISADOR CEM SPRINT TM. Revista Do Instituto De LatÃ∈inios Cândido Tostes, 2015, 70, 192.	0.3	1
92	Use of mid infrared spectroscopy to analyze the ripening of Brazilian bananas. Food Science and Technology, 0, 42, .	0.8	1
93	Decay dynamics of the green luminescence in Er3Â-doped SiN alloys. Journal of Physics Condensed Matter, 2003, 15, 4859-4867.	0.7	0
94	Thermo-optical properties of glasses doped with semiconductor or metallic nanoparticles and rare-earth ions. , 2020, , 5-29.		0
95	Use of antimicrobials in patients with COVID-19 without prior evaluation of an associated bacterial infection. Research, Society and Development, 2021, 10, e264101220410.	0.0	0
96	FT-NIR associado a método quimiométrico para discriminar resÃduos de antimicrobianos e antiparasitário no leite. DEMETRA: Alimentaç£o, Nutrição & Saúde, 0, 15, e47945.	0.2	0