
Zhou Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/97547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lead-free molecular one-dimensional perovskite for efficient X-ray detection. Journal of Energy Chemistry, 2022, 64, 209-213.	12.9	15
2	lonâ€Accumulationâ€Induced Charge Tunneling for High Gain Factor in P–l–Nâ€Structured Perovskite CH ₃ NH ₃ PbI ₃ Xâ€Ray Detector. Advanced Materials Technologies, 2022, 7, 2100908.	5.8	15
3	Flexible, High Scintillation Yield Cu ₃ Cu ₂ I ₅ Film Made of Ballâ€Milled Powder for High Spatial Resolution Xâ€Ray Imaging. Advanced Optical Materials, 2022, 10, .	7.3	37
4	Estimating litchi flower number using a multicolumn convolutional neural network based on a density map. Precision Agriculture, 2022, 23, 1226-1247.	6.0	9
5	Inch-size Cs ₃ Bi ₂ I ₉ polycrystalline wafers with near-intrinsic properties for ultralow-detection-limit X-ray detection. Journal of Materials Chemistry C, 2022, 10, 6665-6672.	5.5	18
6	Cesium Lead Halide Nanocrystals based Flexible Xâ€Ray Imaging Screen and Visible Dose Rate Indication on Paper Substrate. Advanced Optical Materials, 2022, 10, .	7.3	39
7	Electrochemically Fabricated Surface-Mesostructured CuNi Bimetallic Catalysts for Hydrogen Production in Alkaline Media. Nanomaterials, 2022, 12, 118.	4.1	4
8	Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2005776.	14.9	273
9	A facile template-assisted electrodeposition approach to porous Cu/Cu ₂ O nanowires. RSC Advances, 2021, 11, 30215-30221.	3.6	4
10	Tripleâ€Cation and Mixedâ€Halide Perovskite Single Crystal for Highâ€Performance Xâ€ray Imaging. Advanced Materials, 2021, 33, e2006010.	21.0	163
11	Halide perovskites for high-performance X-ray detector. Materials Today, 2021, 48, 155-175.	14.2	163
12	Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Science Advances, 2021, 7, .	10.3	81
13	Centimeterâ€Sized Molecular Perovskite Crystal for Efficient Xâ€Ray Detection. Advanced Functional Materials, 2021, 31, 2100691.	14.9	22
14	Performance Evaluation of a Banana Pseudostem Chopper. HortTechnology, 2021, 31, 208-216.	0.9	0
15	Highly Luminescent Metalâ€Free Perovskite Single Crystal for Biocompatible Xâ€Ray Detector to Attain Highest Sensitivity. Advanced Materials, 2021, 33, e2102190.	21.0	46
16	Halide-modulated self-assembly of metal-free perovskite single crystals for bio-friendly X-ray detection. Matter, 2021, 4, 2490-2507.	10.0	47
17	Grain and stoichiometry engineering for ultra-sensitive perovskite X-ray detectors. Journal of Materials Chemistry A, 2021, 9, 25603-25610.	10.3	18
18	Flexible Diodes/Transistors Based on Tunable p-n-Type Semiconductivity in Graphene/Mn-Co-Ni-O Nanocomposites. Research, 2021, 2021, 9802795.	5.7	2

#	Article	IF	CITATIONS
19	Graphene–MCN pn-junction for ultrafast flexible ultraviolet detector. MRS Communications, 2021, 11, 862.	1.8	0
20	Above-Band-Gap Voltage from Oriented Bismuth Ferrite Ceramic Photovoltaic Cells. ACS Applied Energy Materials, 2021, 4, 12703-12708.	5.1	6
21	27%â€Efficiency Fourâ€Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh. Advanced Functional Materials, 2020, 30, 1908298.	14.9	91
22	2D Perovskite Single Crystals with Suppressed Ion Migration for Highâ€Performance Planarâ€Type Photodetectors. Small, 2020, 16, e2003145.	10.0	56
23	Metalâ€Free Halide Perovskite Single Crystals with Very Long Charge Lifetimes for Efficient Xâ€ray Imaging. Advanced Materials, 2020, 32, e2003353.	21.0	68
24	Efficient X-ray Attenuation Lead-Free AgBi ₂ 1 ₇ Halide Rudorffite Alternative for Sensitive and Stable X-ray Detection. Journal of Physical Chemistry Letters, 2020, 11, 7939-7945.	4.6	34
25	Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nature Communications, 2020, 11, 2304.	12.8	286
26	Inch-Size 0D-Structured Lead-Free Perovskite Single Crystals for Highly Sensitive Stable X-Ray Imaging. Matter, 2020, 3, 180-196.	10.0	202
27	Orchard Spray Study: A Prediction Model of Droplet Deposition States on Leaf Surfaces. Agronomy, 2020, 10, 747.	3.0	17
28	Large and Dense Organic–Inorganic Hybrid Perovskite CH ₃ NH ₃ PbI ₃ Wafer Fabricated by One-Step Reactive Direct Wafer Production with High X-ray Sensitivity. ACS Applied Materials & Interfaces, 2020, 12, 16592-16600.	8.0	94
29	Rapid colorimetric sensing of ascorbic acid based on the excellent peroxidase-like activity of Pt deposited on ZnCo ₂ O ₄ spheres. New Journal of Chemistry, 2020, 44, 12002-12008.	2.8	18
30	Direct Growth of Pyramidâ€Textured Perovskite Single Crystals: A New Strategy for Enhanced Optoelectronic Performance. Advanced Functional Materials, 2020, 30, 2002742.	14.9	20
31	Large Leadâ€Free Perovskite Single Crystal for Highâ€Performance Coplanar Xâ€Ray Imaging Applications. Advanced Optical Materials, 2020, 8, 2000814.	7.3	67
32	Controlled nâ€Doping in Airâ€Stable CsPbl ₂ Br Perovskite Solar Cells with a Record Efficiency of 16.79%. Advanced Functional Materials, 2020, 30, 1909972.	14.9	282
33	Highly stable and efficient perovskite solar cells produced via high-boiling point solvents and additive engineering synergistically. Science China Chemistry, 2020, 63, 818-826.	8.2	11
34	A Novel Anion Doping for Stable CsPbI ₂ Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V. Advanced Energy Materials, 2019, 9, 1902279.	19.5	166
35	Hierarchical ZnO Microspheres Embedded in TiO ₂ Photoanode for Enhanced CdS/CdSe Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 1259-1265.	5.1	7
36	Two-dimensional (PEA) ₂ PbBr ₄ perovskite single crystals for a high performance UV-detector. Journal of Materials Chemistry C, 2019, 7, 1584-1591.	5.5	138

#	Article	IF	CITATIONS
37	Lowâ€Temperature Solutionâ€Processed ZnO Electron Transport Layer for Highly Efficient and Stable Planar Perovskite Solar Cells with Efficiency Over 20%. Solar Rrl, 2019, 3, 1900096.	5.8	66
38	Electromagnetic Responses and Coupling Effect in Asymmetric Terahertz Metamaterials. , 2019, , .		1
39	PbTiO ₃ as Electronâ€6elective Layer for Highâ€Efficiency Perovskite Solar Cells: Enhanced Electron Extraction via Tunable Ferroelectric Polarization. Advanced Functional Materials, 2019, 29, 1806427.	14.9	23
40	Dynamical Transformation of Two-Dimensional Perovskites with Alternating Cations in the Interlayer Space for High-Performance Photovoltaics. Journal of the American Chemical Society, 2019, 141, 2684-2694.	13.7	189
41	Chelate-Pb Intermediate Engineering for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14744-14750.	8.0	15
42	Bifunctional Hydroxylamine Hydrochloride Incorporated Perovskite Films for Efficient and Stable Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 900-909.	5.1	81
43	Highâ€Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustionâ€Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%. Advanced Energy Materials, 2018, 8, 1703432.	19.5	279
44	Stable Highâ€Performance Perovskite Solar Cells via Grain Boundary Passivation. Advanced Materials, 2018, 30, e1706576.	21.0	665
45	High performance ambient-air-stable FAPbl ₃ perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy and Environmental Science, 2018, 11, 3358-3366.	30.8	196
46	Magnetic Field Driven Larger Grain Growth for Perovskite Film with Enhanced Photovoltaic Performance. , 2018, , .		1
47	Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nature Communications, 2018, 9, 5302.	12.8	212
48	Highâ€Quality Sequentialâ€Vaporâ€Deposited Cs ₂ AgBiBr ₆ Thin Films for Leadâ€Free Perovskite Solar Cells (Solar RRL 12â^2018). Solar Rrl, 2018, 2, 1870238.	5.8	9
49	Highâ€Quality Sequentialâ€Vaporâ€Deposited Cs ₂ AgBiBr ₆ Thin Films for Leadâ€Free Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800217.	5.8	138
50	In Situ Grain Boundary Modification via Two-Dimensional Nanoplates to Remarkably Improve Stability and Efficiency of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 39802-39808.	8.0	24
51	A Sandwichâ€Like Organolead Halide Perovskite Photocathode for Efficient and Durable Photoelectrochemical Hydrogen Evolution in Water. Advanced Energy Materials, 2018, 8, 1800795.	19.5	106
52	A 1300 mm ² Ultrahighâ€Performance Digital Imaging Assembly using Highâ€Quality Perovskite Single Crystals. Advanced Materials, 2018, 30, e1707314.	21.0	246
53	Synergistic enhancement of Cs and Br doping in formamidinium lead halide perovskites for high performance optoelectronics. CrystEngComm, 2018, 20, 5510-5518.	2.6	6
54	Enhanced Planar Perovskite Solar Cell Performance via Contact Passivation of TiO ₂ /Perovskite Interface with NaCl Doping Approach. ACS Applied Energy Materials, 2018, 1, 3826-3834.	5.1	68

#	Article	IF	CITATIONS
55	Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy. Advanced Materials, 2018, 30, e1801418.	21.0	377
56	Highly efficient perovskite solar cells based on a dopant-free conjugated DPP polymer hole transport layer: influence of solvent vapor annealing. Sustainable Energy and Fuels, 2018, 2, 2154-2159.	4.9	24
57	Solution Coating of Superior Largeâ€Area Flexible Perovskite Thin Films with Controlled Crystal Packing. Advanced Optical Materials, 2017, 5, 1700102.	7.3	34
58	Solution-Processed Nb:SnO ₂ Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 2421-2429.	8.0	315
59	120 mm single-crystalline perovskite and wafers: towards viable applications. Science China Chemistry, 2017, 60, 1367-1376.	8.2	107
60	Local temperature reduction induced crystallization of MASnI ₃ and achieving a direct wafer production. RSC Advances, 2017, 7, 38155-38159.	3.6	17
61	Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy and Environmental Science, 2017, 10, 2095-2102.	30.8	588
62	High-Performance, Self-Powered Photodetectors Based on Perovskite and Graphene. ACS Applied Materials & Interfaces, 2017, 9, 42779-42787.	8.0	91
63	Telluriumâ€Assisted Epitaxial Growth of Largeâ€Area, Highly Crystalline ReS ₂ Atomic Layers on Mica Substrate. Advanced Materials, 2016, 28, 5019-5024.	21.0	169
64	Band alignment of TiO2/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing. AIP Advances, 2016, 6, .	1.3	17
65	Optical and electrical properties of high-quality Ti2O3 epitaxial film grown on sapphire substrate. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	10
66	Stable high efficiency perovskite solar cells using vacuum deposition. , 2016, , .		0
67	20â€mmâ€Large Singleâ€Crystalline Formamidiniumâ€Perovskite Wafer for Mass Production of Integrated Photodetectors. Advanced Optical Materials, 2016, 4, 1829-1837.	7.3	316
68	Thinness―and Shape ontrolled Growth for Ultrathin Single rystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices. Advanced Materials, 2016, 28, 9204-9209.	21.0	296
69	Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy and Environmental Science, 2016, 9, 3071-3078.	30.8	870
70	Neural correlates of restrained eaters' high susceptibility to food cues: An fMRI study. Neuroscience Letters, 2016, 631, 56-62.	2.1	25
71	Perovskite CH ₃ NH ₃ Pb(Br _x I _{1â^*x}) ₃ single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. Journal of Materials Chemistry C, 2016, 4, 9172-9178.	5.5	120
72	Atomic Layers: Tellurium-Assisted Epitaxial Growth of Large-Area, Highly Crystalline ReS2 Atomic Layers on Mica Substrate (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5018-5018.	21.0	5

#	Article	IF	CITATIONS
73	Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation. Scientific Reports, 2016, 6, 35091.	3.3	60
74	Perovskite Wafers: Thinness―and Shapeâ€Controlled Growth for Ultrathin Singleâ€Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9203-9203.	21.0	3
75	Hysteresisâ€Suppressed Highâ€Efficiency Flexible Perovskite Solar Cells Using Solidâ€State Ionicâ€Liquids for Effective Electron Transport. Advanced Materials, 2016, 28, 5206-5213.	21.0	387
76	Effective solvent-additive enhanced crystallization and coverage of absorber layers for high efficiency formamidinium perovskite solar cells. RSC Advances, 2016, 6, 56807-56811.	3.6	25
77	Color-Tuned Perovskite Films Prepared for Efficient Solar Cell Applications. Journal of Physical Chemistry C, 2016, 120, 42-47.	3.1	106
78	From Polymer to Monomer: Cleavage and Rearrangement of Siâ€Oâ€5i Bonds after Oxidation Yielded an Ordered Cyclic Crystallized Structure. Chemistry - A European Journal, 2015, 21, 10972-10977.	3.3	18
79	Frontispiece: From Polymer to Monomer: Cleavage and Rearrangement of Si-O-Si Bonds after Oxidation Yielded an Ordered Cyclic Crystallized Structure. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
80	Twoâ€Inchâ€Sized Perovskite CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I) Crystals: Growth and Characterization. Advanced Materials, 2015, 27, 5176-5183.	21.0	914
81	Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. Journal of Materials Chemistry A, 2015, 3, 9401-9405.	10.3	146
82	High efficiency flexible perovskite solar cells using superior low temperature TiO ₂ . Energy and Environmental Science, 2015, 8, 3208-3214.	30.8	519
83	Room temperature H2S micro-sensors with anti-humidity properties fabricated from NiO-In2O3 composite nanofibers. Science Bulletin, 2013, 58, 821-826.	1.7	15