Ben Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/974976/publications.pdf

Version: 2024-02-01

43 papers

4,079 citations

218677
26
h-index

289244 40 g-index

45 all docs

45 docs citations

45 times ranked

4238 citing authors

#	Article	IF	CITATIONS
1	A Survey on Swarm Microrobotics. IEEE Transactions on Robotics, 2022, 38, 1531-1551.	10.3	45
2	Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nature Communications, 2022, 13, 358.	12.8	160
3	Analysis of High-Speed Milling Surface Topography and Prediction of Wear Resistance. Materials, 2022, 15, 1707.	2.9	3
4	Liquid metal droplets enabled soft robots. Applied Materials Today, 2022, 27, 101423.	4.3	31
5	Trends in Microâ€∤Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials, 2021, 33, e2002047.	21.0	256
6	Recyclable, weldable, mechanically durable, and programmable liquid metal-elastomer composites. Journal of Materials Chemistry A, 2021, 9, 10953-10965.	10.3	42
7	Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Science Robotics, 2021, 6, .	17.6	164
8	The Wear Resistance Characteristics Analysis of the Ball-End Milling Topography Surface. Integrated Ferroelectrics, 2021, 218, 129-138.	0.7	1
9	Analysis of Wear Resistance Based on Milling Topography. Integrated Ferroelectrics, 2021, 218, 119-128.	0.7	4
10	Fabrication of bioinspired edible liquid marble with phase transition and tunable water barrier property. Bio-Design and Manufacturing, 2021, 4, 889-901.	7.7	10
11	Recent advances in atmosphere water harvesting: Design principle, materials, devices, and applications. Nano Today, 2021, 40, 101283.	11.9	61
12	Liquid Metal–Based Soft Microfluidics. Small, 2020, 16, e1903841.	10.0	146
13	Study on Fatigue Characteristics of Bionic Functional Surface of Hardened Steel. Materials, 2020, 13, 4130.	2.9	1
14	Bioinspired Tough Organohydrogel Dynamic Interfaces Enabled Subzero Temperature Antifrosting, Deicing, and Antiadhesion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55501-55509.	8.0	16
15	Analysis and Prediction of Wear Performance of Different Topography Surface. Materials, 2020, 13, 5056.	2.9	7
16	Light-Driven Hovering of a Magnetic Microswarm in Fluid. ACS Nano, 2020, 14, 6990-6998.	14.6	69
17	Bioinspired Superhydrophobic Surface Constructed from Hydrophilic Building Blocks: A Case Study of Core–Shell Polypyrrole-Coated Copper Nanoneedles. Coatings, 2020, 10, 347.	2.6	5
18	Light-Triggered Catalytic Performance Enhancement Using Magnetic Nanomotor Ensembles. Research, 2020, 2020, 6380794.	5.7	24

#	Article	IF	CITATIONS
19	Bubble-Assisted Three-Dimensional Ensemble of Nanomotors for Improved Catalytic Performance. IScience, 2019, 19, 760-771.	4.1	33
20	Miniature Bioreactors: Onâ€Demand Coalescence and Splitting of Liquid Marbles and Their Bioapplications (Adv. Sci. 10/2019). Advanced Science, 2019, 6, 1970061.	11.2	0
21	Dynamic Morphology and Swimming Properties of Rotating Miniature Swimmers With Soft Tails. IEEE/ASME Transactions on Mechatronics, 2019, 24, 924-934.	5.8	79
22	Onâ€Demand Coalescence and Splitting of Liquid Marbles and Their Bioapplications. Advanced Science, 2019, 6, 1802033.	11.2	39
23	Hydrophobicity Influence on Swimming Performance of Magnetically Driven Miniature Helical Swimmers. Micromachines, 2019, 10, 175.	2.9	15
24	Collective Behavior of Reconfigurable Magnetic Droplets via Dynamic Self-Assembly. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1630-1637.	8.0	66
25	Reconfigurable Swarms of Ferromagnetic Colloids forÂEnhanced Local Hyperthermia. Advanced Functional Materials, 2018, 28, 1705701.	14.9	112
26	Recent progress on micro- and nano-robots: towards in vivo tracking and localization. Quantitative lmaging in Medicine and Surgery, 2018, 8, 461-479.	2.0	64
27	Ultra-extensible ribbon-like magnetic microswarm. Nature Communications, 2018, 9, 3260.	12.8	298
28	Colloidal Particles: Reconfigurable Swarms of Ferromagnetic Colloids forÂEnhanced Local Hyperthermia (Adv. Funct. Mater. 25/2018). Advanced Functional Materials, 2018, 28, 1870174.	14.9	1
29	Selective surface tension induced patterning on flexible textiles via click chemistry. Nanoscale, 2017, 9, 4777-4786.	5.6	11
30	Rotating soft-tail millimeter-scaled swimmers with superhydrophilic or superhydrophobic surfaces. , 2016, , .		7
31	Nanoparticles: Bioinspired Superhydrophobic Fe ₃ O ₄ @Polydopamine@Ag Hybrid Nanoparticles for Liquid Marble and Oil Spill (Adv. Mater. Interfaces 13/2015). Advanced Materials Interfaces, 2015, 2, .	3.7	2
32	Bioinspired Superhydrophobic Fe ₃ O ₄ @Polydopamine@Ag Hybrid Nanoparticles for Liquid Marble and Oil Spill. Advanced Materials Interfaces, 2015, 2, 1500234.	3.7	76
33	Substrate Coupling Strength of Integrin-Binding Ligands Modulates Adhesion, Spreading, and Differentiation of Human Mesenchymal Stem Cells. Nano Letters, 2015, 15, 6592-6600.	9.1	43
34	Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chemical Society Reviews, 2015, 44, 336-361.	38.1	1,359
35	A simple route to transform normal hydrophilic cloth into a superhydrophobic–superhydrophilic hybrid surface. Journal of Materials Chemistry A, 2014, 2, 7845-7852.	10.3	63
36	pH-responsive smart fabrics with controllable wettability in different surroundings. RSC Advances, 2014, 4, 14684.	3.6	45

#	Article	IF	CITATIONS
37	Transparent and Superhydrophobic Co3O4 Microfiber Films. Chemistry Letters, 2014, 43, 100-101.	1.3	16
38	Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Applied Physics Letters, 2013, 103, .	3.3	80
39	pH-responsive bidirectional oil–water separation material. Chemical Communications, 2013, 49, 9416.	4.1	170
40	Methodology for Robust Superhydrophobic Fabrics and Sponges from In Situ Growth of Transition Metal/Metal Oxide Nanocrystals with Thiol Modification and Their Applications in Oil/Water Separation. ACS Applied Materials & Separation. ACS Applied Materials & Separation. ACS Applied Materials & Separation.	8.0	251
41	Conductive and transparent superhydrophobic films on various substrates by <i>in situ</i> deposition. Applied Physics Letters, 2013, 102, .	3.3	26
42	A Cooperative Downlink Power Setting Scheme for CA-Based Femtocells., 2012,,.		1
43	Advances in the theory of superhydrophobic surfaces. Journal of Materials Chemistry, 2012, 22, 20112.	6.7	177