Zhe Jian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/974945/publications.pdf

Version: 2024-02-01

279798 289244 1,778 45 23 40 citations h-index g-index papers 45 45 45 2240 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Heme Oxygenase-1 Protects Human Melanocytes from H2O2-Induced Oxidative Stress via the Nrf2-ARE Pathway. Journal of Investigative Dermatology, 2011, 131, 1420-1427.	0.7	147
2	Impaired Activation of the Nrf2-ARE Signaling Pathway Undermines H2O2-Induced Oxidative Stress Response: A Possible Mechanism for Melanocyte Degeneration in Vitiligo. Journal of Investigative Dermatology, 2014, 134, 2221-2230.	0.7	145
3	Oxidative stress drives CD8 + T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. Journal of Allergy and Clinical Immunology, 2017, 140, 177-189.e9.	2.9	136
4	MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Biomaterials, 2020, 257, 120264.	11.4	114
5	Baicalein protects Human melanocytes from H2O2-induced apoptosis via inhibiting mitochondria-dependent caspase activation and the p38 MAPK pathway. Free Radical Biology and Medicine, 2012, 53, 183-193.	2.9	94
6	SIRT3-Dependent Mitochondrial Dynamics Remodeling Contributes to Oxidative Stress-Induced Melanocyte Degeneration in Vitiligo. Theranostics, 2019, 9, 1614-1633.	10.0	92
7	Down-regulated miR-23a Contributes to the Metastasis of Cutaneous Melanoma by Promoting Autophagy. Theranostics, 2017, 7, 2231-2249.	10.0	81
8	Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radical Biology and Medicine, 2018, 129, 492-503.	2.9	69
9	Oxidative Stress–Induced HMGB1 Release fromÂMelanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation inÂVitiligo. Journal of Investigative Dermatology, 2019, 139, 2174-2184.e4.	0.7	64
10	Simvastatin Protects Human Melanocytes from H2O2-Induced Oxidative Stress byÂActivating Nrf2. Journal of Investigative Dermatology, 2017, 137, 1286-1296.	0.7	62
11	Activated NLR family pyrin domain containing 3 (NLRP3) inflammasome in keratinocytes promotes cutaneous T-cell response in patients with vitiligo. Journal of Allergy and Clinical Immunology, 2020, 145, 632-645.	2.9	53
12	Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8+ T cells activation via JAK-STAT pathway in vitiligo. Free Radical Biology and Medicine, 2019, 139, 80-91.	2.9	52
13	Aspirin induces Nrf2â€mediated transcriptional activation of haem oxygenaseâ€1 in protection of human melanocytes from H ₂ O ₂ â€induced oxidative stress. Journal of Cellular and Molecular Medicine, 2016, 20, 1307-1318.	3.6	50
14	Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction. Cancer Immunology, Immunotherapy, 2011, 60, 1109-1118.	4.2	42
15	Berberine protects immortalized line of human melanocytes from H2O2-induced oxidative stress via activation of Nrf2 and Mitf signaling pathway. Journal of Dermatological Science, 2019, 94, 236-243.	1.9	37
16	A similar local immune and oxidative stress phenotype in vitiligo and halo nevus. Journal of Dermatological Science, 2017, 87, 50-59.	1.9	36
17	Ginkgo biloba extract protects human melanocytes from H ₂ O ₂ â€induced oxidative stress by activating Nrf2. Journal of Cellular and Molecular Medicine, 2019, 23, 5193-5199.	3.6	35
18	Downregulated TRPV1 Expression Contributes to Melanoma Growth via the Calcineurin-ATF3-p53 Pathway. Journal of Investigative Dermatology, 2018, 138, 2205-2215.	0.7	34

#	Article	IF	Citations
19	NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation induced skin injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166287.	3.8	32
20	Cancer Stem Cells in Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2017, 137, 31-37.	0.7	30
21	Genetic polymorphism of the <i>Nrf2</i> promoter region is associated with vitiligo risk in Han Chinese populations. Journal of Cellular and Molecular Medicine, 2016, 20, 1840-1850.	3.6	28
22	Upâ€regulated deubiquitinase <scp>USP</scp> 4 plays an oncogenic role in melanoma. Journal of Cellular and Molecular Medicine, 2018, 22, 2944-2954.	3 . 6	28
23	HOâ€1 regulates the function of Treg: Association with the immune intolerance in vitiligo. Journal of Cellular and Molecular Medicine, 2018, 22, 4335-4343.	3.6	27
24	Role of the aryl hydrocarbon receptor signaling pathway in promoting mitochondrial biogenesis against oxidative damage in human melanocytes. Journal of Dermatological Science, 2019, 96, 33-41.	1.9	27
25	SOX4 Promotes Proliferative Signals by Regulating Glycolysis through AKT Activation in Melanoma Cells. Journal of Investigative Dermatology, 2017, 137, 2407-2416.	0.7	26
26	<i>Balamuthia mandrillaris</i> infection in China: a retrospective report of 28 cases. Emerging Microbes and Infections, 2020, 9, 2348-2357.	6. 5	25
27	A singleâ€nucleotide polymorphism of miRâ€196aâ€2 and vitiligo: an association study and functional analysis in a <scp>H</scp> an <scp>C</scp> hinese population. Pigment Cell and Melanoma Research, 2013, 26, 338-347.	3.3	22
28	Tranilast Directly Targets NLRP3 to Protect Melanocytes From Keratinocyte-Derived IL- $1\hat{l}^2$ Under Oxidative Stress. Frontiers in Cell and Developmental Biology, 2020, 8, 588.	3.7	22
29	Gut Microbial Dysbiosis and Plasma Metabolic Profile in Individuals With Vitiligo. Frontiers in Microbiology, 2020, 11, 592248.	3 . 5	22
30	AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo. Scientific Reports, 2015, 5, 13542.	3.3	21
31	Genetic variants of the APE1 gene and the risk of vitiligo in a Chinese population: A genotype–phenotype correlation study. Free Radical Biology and Medicine, 2013, 58, 64-72.	2.9	15
32	Analysis of Inducible Nitric Oxide Synthase Gene Polymorphisms in Vitiligo in Han Chinese People. PLoS ONE, 2011, 6, e27077.	2.5	14
33	Intracellular virus sensor MDA5 exacerbates vitiligo by inducing the secretion of chemokines in keratinocytes under virus invasion. Cell Death and Disease, 2020, 11, 453.	6.3	14
34	Smad7 Ameliorates TGF-β–Mediated Skin Inflammation and Associated Wound Healing Defects but Not Susceptibility to Experimental Skin Carcinogenesis. Journal of Investigative Dermatology, 2019, 139, 940-950.	0.7	13
35	Homocysteine induces melanocytes apoptosis via PERK–elF2α–CHOP pathway in vitiligo. Clinical Science, 2020, 134, 1127-1141.	4.3	13
36	HSF1-Dependent Autophagy Activation Contributes to the Survival of Melanocytes Under Oxidative Stress in Vitiligo. Journal of Investigative Dermatology, 2022, 142, 1659-1669.e4.	0.7	12

#	Article	IF	CITATIONS
37	The Formation of Melanocyte Apoptotic Bodies in Vitiligo and the Relocation of Vitiligo Autoantigens under Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	4.0	9
38	Topical Application of Tat-Rac1 Promotes Cutaneous Wound Healing in Normal and Diabetic Mice. International Journal of Biological Sciences, 2018, 14, 1163-1174.	6.4	7
39	Multiple pro-tumorigenic functions of the human minor Histocompatibility Antigen-1 (HA-1) in melanoma progression. Journal of Dermatological Science, 2017, 88, 216-224.	1.9	6
40	Identification of the Risk HLA-A Alleles and Autoantigen in Han Chinese Vitiligo Patients and the Association of CD8+T Cell Reactivity with Disease Characteristics. Medical Science Monitor, 2018, 24, 6489-6497.	1.1	6
41	Fractional microneedle radiofrequency device and fractional erbium-doped glass 1,565-nm device treatment of human facial photoaging: a prospective, split-face, random clinical trial. Journal of Cosmetic and Laser Therapy, 2021, 23, 142-148.	0.9	6
42	Transcellular traversal of the bloodâ€brain barrier by the pathogenic <i>Propionibacterium acnes</i> Journal of Cellular Biochemistry, 2019, 120, 8457-8465.	2.6	5
43	Treatment of Cutaneous <i>Balamuthia mandrillaris</i> Infection With Diminazene Aceturate: A Report of 4 Cases. Clinical Infectious Diseases, 2022, 75, 1637-1640.	5.8	3
44	A randomized, split-face controlled trial on the safety and effects of microneedle fractional radiofrequency and fractional erbium-doped glass 1,565-nm laser therapies for baggy lower eyelids. Journal of Cosmetic and Laser Therapy, 2021, 23, 105-112.	0.9	2
45	Abstract 477: Down-regulated miR-23a contributes to invasion and metastasis of cutaneous melanoma by promoting autophagy. , 2017, , .		O