
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/974879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of Potent Cellular and Humoral Immune Responses in Long-Term Hemodialysis Patients After 1273-mRNA SARS-CoV-2 Vaccination. Frontiers in Immunology, 2022, 13, 845882.	2.2	6
2	Systematically evaluating DOTATATE and FDC as PET immuno-imaging tracers of cardiovascular inflammation. Scientific Reports, 2022, 12, 6185.	1.6	14
3	Alicante-Winter Immunology Symposium in Health (A-Wish) and the Boulle-SEI awards: A collaboration between the Spanish Society for immunology, the University of Alicante and the Jean Boulle Group to honor the Balmis Expedition. Current Research in Immunology, 2022, 3, 136-145.	1.2	0
4	Rapid, scalable assessment of SARS-CoV-2 cellular immunity by whole-blood PCR. Nature Biotechnology, 2022, 40, 1680-1689.	9.4	29
5	Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 2021, 22, 2-6.	7.0	274
6	A modular approach toward producing nanotherapeutics targeting the innate immune system. Science Advances, 2021, 7, .	4.7	20
7	The BCG Vaccine for COVID-19: First Verdict and Future Directions. Frontiers in Immunology, 2021, 12, 632478.	2.2	57
8	Cyclic Arginine–Glycine–Aspartateâ€Decorated Lipid Nanoparticle Targeting toward Inflammatory Lesions Involves Hitchhiking with Phagocytes. Advanced Science, 2021, 8, 2100370.	5.6	9
9	Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet, The, 2021, 398, 121-130.	6.3	316
10	Differential effects of the second SARS-CoV-2 mRNA vaccine dose on TÂcell immunity in naive and COVID-19 recovered individuals. Cell Reports, 2021, 36, 109570.	2.9	86
11	Induction of High Levels of Specific Humoral and Cellular Responses to SARS-CoV-2 After the Administration of Covid-19 mRNA Vaccines Requires Several Days. Frontiers in Immunology, 2021, 12, 726960.	2.2	16
12	Trained immunity in organ transplantation. American Journal of Transplantation, 2020, 20, 10-18.	2.6	70
13	Tolerogenic dendritic cells in organ transplantation. Transplant International, 2020, 33, 113-127.	0.8	52
14	Review: Ischemia Reperfusion Injury—A Translational Perspective in Organ Transplantation. International Journal of Molecular Sciences, 2020, 21, 8549.	1.8	64
15	Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell, 2020, 183, 786-801.e19.	13.5	101
16	Macrophages in Organ Transplantation. Frontiers in Immunology, 2020, 11, 582939.	2.2	44
17	Tumor Targeting by α _v l² ₃ -Integrin-Specific Lipid Nanoparticles Occurs <i>via</i> Phagocyte Hitchhiking. ACS Nano, 2020, 14, 7832-7846.	7.3	69
18	Myeloid-Derived Suppressor Cells in Kidney Transplant Recipients and the Effect of Maintenance Immunotherapy. Frontiers in Immunology, 2020, 11, 643.	2.2	16

#	Article	IF	CITATIONS
19	Tissue-Resident PDGFRα+ Progenitor Cells Contribute to Fibrosis versus Healing in a Context- and Spatiotemporally Dependent Manner. Cell Reports, 2020, 30, 555-570.e7.	2.9	43
20	C5aR1 regulates migration of suppressive myeloid cells required for costimulatory blockade-induced murine allograft survival. American Journal of Transplantation, 2019, 19, 633-645.	2.6	25
21	Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell, 2019, 178, 1102-1114.e17.	13.5	254
22	Tolerogenic Role of Myeloid Suppressor Cells in Organ Transplantation. Frontiers in Immunology, 2019, 10, 374.	2.2	24
23	Therapeutic targeting of trained immunity. Nature Reviews Drug Discovery, 2019, 18, 553-566.	21.5	287
24	The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cellular and Molecular Immunology, 2019, 16, 350-356.	4.8	65
25	Role of myeloid regulatory cells (MRCs) in maintaining tissue homeostasis and promoting tolerance in autoimmunity, inflammatory disease and transplantation. Cancer Immunology, Immunotherapy, 2019, 68, 661-672.	2.0	47
26	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	11.6	94
27	Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. American Journal of Transplantation, 2018, 18, 1247-1255.	2.6	58
28	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	6.6	161
29	IL-17A Is Critical for CD8+ T Effector Response in Airway Epithelial Injury After Transplantation. Transplantation, 2018, 102, e483-e493.	0.5	12
30	STAT1 activation represses IL-22 gene expression and psoriasis pathogenesis. Biochemical and Biophysical Research Communications, 2018, 501, 563-569.	1.0	20
31	Mouse DC-SIGN/CD209a as Target for Antigen Delivery and Adaptive Immunity. Frontiers in Immunology, 2018, 9, 990.	2.2	35
32	TIGIT+ iTregsÂelicited by human regulatory macrophages control T cell immunity. Nature Communications, 2018, 9, 2858.	5.8	101
33	Follicular Dendritic Cell Activation by TLR Ligands Promotes Autoreactive B Cell Responses. Immunity, 2017, 46, 106-119.	6.6	84
34	Immune responses to bioengineered organs. Current Opinion in Organ Transplantation, 2017, 22, 79-85.	0.8	7
35	The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity. Cell, 2017, 169, 679-692.e14.	13.5	48
36	The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 2017, 47, 566-581.e9.	6.6	1,741

#	Article	IF	CITATIONS
37	Functional Characterization of Regulatory Macrophages That Inhibit Graft-reactive Immunity. Journal of Visualized Experiments, 2017, , .	0.2	2
38	Nanoparticle-Based Modulation and Monitoring of Antigen-Presenting Cells in Organ Transplantation. Frontiers in Immunology, 2017, 8, 1888.	2.2	17
39	T follicular helper cells: a potential therapeutic target in follicular lymphoma. Oncotarget, 2017, 8, 112116-112131.	0.8	25
40	The Mononuclear Phagocyte System in Organ Transplantation. American Journal of Transplantation, 2016, 16, 1053-1069.	2.6	24
41	Myeloid derived suppressor cells and autoimmunity. Human Immunology, 2016, 77, 631-636.	1.2	70
42	New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nature Immunology, 2016, 17, 34-40.	7.0	630
43	DC-SIGN+ Macrophages Control the Induction of Transplantation Tolerance. Immunity, 2015, 42, 1143-1158.	6.6	144
44	Monocyte-Derived Suppressor Cells in Transplantation. Current Transplantation Reports, 2015, 2, 176-183.	0.9	27
45	Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology, 2015, 62, 279-291.	3.6	304
46	IL-23 activates innate lymphoid cells to promote neonatal intestinal pathology. Mucosal Immunology, 2015, 8, 390-402.	2.7	50
47	Editorial: Dexamethasone and MDSC in transplantation: yes to NO. Journal of Leukocyte Biology, 2014, 96, 669-671.	1.5	4
48	Innate Immune Cell Collaborations Instigate Transplant Tolerance. American Journal of Transplantation, 2014, 14, 2441-2443.	2.6	4
49	Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice. Journal of Experimental Medicine, 2014, 211, 457-472.	4.2	71
50	Monocytic Myeloid-Derived Suppressor Cells Accumulate in Renal Transplant Patients and Mediate CD4+Foxp3+ Treg Expansion. American Journal of Transplantation, 2013, 13, 3123-3131.	2.6	142
51	Immune Tolerance to Tumor Antigens Occurs in a Specialized Environment of the Spleen. Cell Reports, 2012, 2, 628-639.	2.9	196
52	Myeloid-derived suppressor cells in transplantation and cancer. Immunologic Research, 2012, 54, 275-285.	1.3	73
53	Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. Journal of Experimental Medicine, 2011, 208, 1069-1082.	4.2	145
54	Immunotherapy with myeloid cells for tolerance induction. Current Opinion in Organ Transplantation, 2010, 15, 416-421.	0.8	4

#	Article	IF	CITATIONS
55	Plasmacytoid Dendritic Cells in Tolerance. Methods in Molecular Biology, 2010, 677, 127-147.	0.4	38
56	Myeloid-derived suppressor cells: Natural regulators for transplant tolerance. Human Immunology, 2010, 71, 1061-1066.	1.2	55
57	Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. Journal of Clinical Investigation, 2010, 120, 2486-2496.	3.9	190
58	c-Maf Regulates IL-10 Expression during Th17 Polarization. Journal of Immunology, 2009, 182, 6226-6236.	0.4	202
59	TLR Signals Promote IL-6/IL-17-Dependent Transplant Rejection. Journal of Immunology, 2009, 182, 6217-6225.	0.4	101
60	Regulatory T Cells Sequentially Migrate from Inflamed Tissues to Draining Lymph Nodes to Suppress the Alloimmune Response. Immunity, 2009, 30, 458-469.	6.6	359
61	Migration of Dendritic Cell Subsets and their Precursors. Annual Review of Immunology, 2008, 26, 293-316.	9.5	412
62	The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nature Immunology, 2008, 9, 42-53.	7.0	232
63	Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. Journal of Experimental Medicine, 2007, 204, 3133-3146.	4.2	378
64	ldentification of a distant T-bet enhancer responsive to IL-12/Stat4 and IFNγ/Stat1 signals. Blood, 2007, 110, 2494-2500.	0.6	66
65	Trafficking and migration in tolerance. Current Opinion in Organ Transplantation, 2006, 11, 379-384.	0.8	1
66	Sphingosine 1-phosphate receptor modulators: a new class of immunosuppressants. Clinical Transplantation, 2006, 20, 788-795.	0.8	28
67	Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunology, 2006, 7, 652-662.	7.0	589
68	Direct versus Indirect Allorecognition: Visualization of Dendritic Cell Distribution and Interactions During Rejection and Tolerization. American Journal of Transplantation, 2006, 6, 2488-2496.	2.6	40
69	Sphingosine 1-Phosphate Receptors Regulate Chemokine-Driven Transendothelial Migration of Lymph Node but Not Splenic T Cells. Journal of Immunology, 2005, 175, 2913-2924.	0.4	49
70	IL-6 Plays a Unique Role in Initiating c-Maf Expression during Early Stage of CD4 T Cell Activation. Journal of Immunology, 2005, 174, 2720-2729.	0.4	96
71	Lymph Node Occupancy Is Required for the Peripheral Development of Alloantigen-Specific <i>Foxp3</i> + Regulatory T Cells. Journal of Immunology, 2005, 174, 6993-7005.	0.4	169
72	Therapeutic manipulation of T cell chemotaxis in transplantation. Current Opinion in Immunology, 2004, 16, 571-577.	2.4	18