Deanna L Benson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/974855/publications.pdf

Version: 2024-02-01

85 papers 5,622 citations

39 h-index 79644 73 g-index

87 all docs

87 docs citations

87 times ranked

5741 citing authors

#	Article	IF	Citations
1	Non-Motor Symptoms of Parkinson's Disease: The Neurobiology of Early Psychiatric and Cognitive Dysfunction. Neuroscientist, 2023, 29, 97-116.	2.6	23
2	Cognitive deficits and altered cholinergic innervation in young adult male mice carrying a Parkinson's disease Lrrk2G2019S knockin mutation. Experimental Neurology, 2022, 355, 114145.	2.0	6
3	Mitochondrial localization and moderated activity are key to murine erythroid enucleation. Blood Advances, 2021, 5, 2490-2504.	2.5	16
4	Of Molecules and Mechanisms. Journal of Neuroscience, 2020, 40, 81-88.	1.7	1
5	Interclass GPCR heteromerization affects localization and trafficking. Science Signaling, 2020, $13,\ldots$	1.6	28
6	LRRK2 mutation alters behavioral, synaptic, and nonsynaptic adaptations to acute social stress. Journal of Neurophysiology, 2020, 123, 2382-2389.	0.9	16
7	Restraining Lysosomal Activity Preserves Hematopoietic Stem Cell Quiescence and Potency. Cell Stem Cell, 2020, 26, 359-376.e7.	5.2	169
8	Origins of Parkinson's Disease in Brain Development: Insights From Early and Persistent Effects of LRRK2-G2019S on Striatal Circuits. Frontiers in Neuroscience, 2020, 14, 265.	1.4	11
9	Cyfip1 Regulates SynGAP1 at Hippocampal Synapses. Frontiers in Synaptic Neuroscience, 2020, 12, 581714.	1.3	3
10	Are we listening to everything the PARK genes are telling us?. Journal of Comparative Neurology, 2019, 527, 1527-1540.	0.9	13
11	Functional and behavioral consequences of Parkinson's disease-associated <i>LRRK2-</i> G2019S mutation. Biochemical Society Transactions, 2018, 46, 1697-1705.	1.6	18
12	Parkinson's Disease-Linked LRRK2-G2019S Mutation Alters Synaptic Plasticity and Promotes Resilience to Chronic Social Stress in Young Adulthood. Journal of Neuroscience, 2018, 38, 9700-9711.	1.7	51
13	Quantitative Whole-mount Immunofluorescence Analysis of Cardiac Progenitor Populations in Mouse Embryos. Journal of Visualized Experiments, 2017, , .	0.2	3
14	Visualizing and Characterizing Semaphorin Endocytic Events Using Quantum Dot-Conjugated Proteins. Methods in Molecular Biology, 2017, 1493, 277-286.	0.4	1
15	Report on the National Eye Institute Audacious Goals Initiative: Regenerating the Optic Nerve. , 2016, 57, 1271.		17
16	Altered Development of Synapse Structure and Function in Striatum Caused by Parkinson's Disease-Linked LRRK2-G2019S Mutation. Journal of Neuroscience, 2016, 36, 7128-7141.	1.7	95
17	Cyfip1 Regulates Presynaptic Activity during Development. Journal of Neuroscience, 2016, 36, 1564-1576.	1.7	58
18	Cadherinâ€8 expression, synaptic localization, and molecular control of neuronal form in prefrontal corticostriatal circuits. Journal of Comparative Neurology, 2015, 523, 75-92.	0.9	30

#	Article	IF	Citations
19	Cadherin-Based Transsynaptic Networks in Establishing and Modifying Neural Connectivity. Current Topics in Developmental Biology, 2015, 112, 415-465.	1.0	35
20	Maturation of cortical circuits requires Semaphorin 7A. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13978-13983.	3.3	34
21	The granin VGF promotes genesis of secretory vesicles, and regulates circulating catecholamine levels and blood pressure. FASEB Journal, 2014, 28, 2120-2133.	0.2	42
22	Axonal capâ€dependent translation regulates presynaptic p35. Developmental Neurobiology, 2014, 74, 351-364.	1.5	15
23	N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus, 2014, 24, 943-962.	0.9	33
24	Role for NUP62 depletion and PYK2 redistribution in dendritic retraction resulting from chronic stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16130-16135.	3.3	36
25	Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochemical Journal, 2013, 453, 101-113.	1.7	84
26	Short- and Long-Term Effects of LRRK2 on Axon and Dendrite Growth. PLoS ONE, 2013, 8, e61986.	1.1	43
27	Anesthetics Interfere with Axon Guidance in Developing Mouse Neocortical Neurons <i>In Vitro via</i> a γ-Aminobutyric Acid Type A Receptor Mechanism. Anesthesiology, 2013, 118, 825-833.	1.3	63
28	Anesthetics Interfere With the Polarization of Developing Cortical Neurons. Journal of Neurosurgical Anesthesiology, 2012, 24, 368-375.	0.6	35
29	Identification of Three Residues Essential for 5-Hydroxytryptamine 2A-Metabotropic Glutamate 2 (5-HT2A·mGlu2) Receptor Heteromerization and Its Psychoactive Behavioral Function. Journal of Biological Chemistry, 2012, 287, 44301-44319.	1.6	122
30	Synapse adhesion: a dynamic equilibrium conferring stability and flexibility. Current Opinion in Neurobiology, 2012, 22, 397-404.	2.0	38
31	Compensatory redistribution of neuroligins and Nâ€cadherin following deletion of synaptic β1â€integrin. Journal of Comparative Neurology, 2012, 520, 2041-2052.	0.9	54
32	Synaptic loss and retention of different classic cadherins with LTPâ€associated synaptic structural remodeling in vivo. Hippocampus, 2012, 22, 17-28.	0.9	17
33	Building and remodeling synapses. Hippocampus, 2012, 22, 954-968.	0.9	31
34	L1 cell adhesion molecule promotes resistance to alcohol-induced silencing of growth cone responses to guidance cues. Neuroscience, 2011, 180, 30-40.	1.1	16
35	Flotillin-Mediated Endocytic Events Dictate Cell Type-Specific Responses to Semaphorin 3A. Journal of Neuroscience, 2010, 30, 15317-15329.	1.7	47
36	Persistence of Coordinated Long-Term Potentiation and Dendritic Spine Enlargement at Mature Hippocampal CA1 Synapses Requires N-Cadherin. Journal of Neuroscience, 2010, 30, 9984-9989.	1.7	109

#	Article	IF	Citations
37	Requirement for Protein Synthesis at Developing Synapses. Journal of Neuroscience, 2009, 29, 9778-9793.	1.7	32
38	Interactions between the L1 cell adhesion molecule and ezrin support tractionâ€force generation and can be regulated by tyrosine phosphorylation. Journal of Neuroscience Research, 2008, 86, 2602-2614.	1.3	31
39	ERM proteins regulate growth cone responses to Sema3A. Journal of Comparative Neurology, 2008, 510, 351-366.	0.9	30
40	Cadherinâ€8 and N adherin differentially regulate pre―and postsynaptic development of the hippocampal mossy fiber pathway. Hippocampus, 2008, 18, 349-363.	0.9	64
41	Effects of ethanol on axon outgrowth and branching in developing rat cortical neurons. Neuroscience, 2008, 157, 556-565.	1.1	26
42	Cadherin expression in the developing mouse olfactory system. Journal of Comparative Neurology, 2007, 501, 483-497.	0.9	30
43	Targeting and clustering citron to synapses. Molecular and Cellular Neurosciences, 2006, 31, 26-36.	1.0	19
44	Structural basis for developmentally regulated changes in cadherin function at synapses. Journal of Comparative Neurology, 2006, 495, 324-335.	0.9	42
45	Neuronal Differentiation: From Axons to Synapses. , 2006, , 45-72.		1
46	Cadherin-Mediated Adhesion and Signaling During Vertebrate Central Synapse Formation., 2006,, 83-95.		0
47	A Prohormone Convertase Cleavage Site within a Predicted \hat{l} ±-Helix Mediates Sorting of the Neuronal and Endocrine Polypeptide VGF into the Regulated Secretory Pathway. Journal of Biological Chemistry, 2005, 280, 41595-41608.	1.6	28
48	Maturation of glutamatergic and GABAergic synapse composition in hippocampal neurons. Neuropharmacology, 2004, 47, 694-705.	2.0	36
49	Temporally distinct demands for classic cadherins in synapse formation and maturation. Molecular and Cellular Neurosciences, 2004, 27, 509-521.	1.0	113
50	ERMs colocalize transiently with L1 during neocortical axon outgrowth. Journal of Comparative Neurology, 2003, 464, 438-448.	0.9	35
51	Î ³ -Protocadherins Are Targeted to Subsets of Synapses and Intracellular Organelles in Neurons. Journal of Neuroscience, 2003, 23, 5096-5104.	1.7	151
52	Functional binding interaction identified between the axonal CAM L1 and members of the ERM family. Journal of Cell Biology, 2002, 157, 1105-1112.	2.3	128
53	Structural Remodeling of the Synapse in Response to Physiological Activity. Cell, 2002, 108, 1-4.	13.5	66
54	Dendritic spine plasticity in hippocampus. Neuroscience, 2002, 111, 853-862.	1.1	42

#	Article	IF	Citations
55	Identification and localization of multiple classic cadherins in developing rat limbic system. Neuroscience, 2002, 115, 213-227.	1.1	74
56	Developmentally regulated changes in cellular compartmentation and synaptic distribution of actin in hippocampal neurons. Journal of Neuroscience Research, 2002, 69, 427-436.	1.3	32
57	Correction: Functional binding interaction identified between the axonal CAM L1 and members of the ERM family. Journal of Cell Biology, 2002, 158, 817-817.	2.3	0
58	Stages of Synapse Development Defined by Dependence on F-Actin. Journal of Neuroscience, 2001, 21, 5169-5181.	1.7	214
59	Molecules, maps and synapse specificity. Nature Reviews Neuroscience, 2001, 2, 899-909.	4.9	154
60	Development and molecular organization of dendritic spines and their synapses. Hippocampus, 2000, 10, 512-526.	0.9	58
61	Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends in Cell Biology, 2000, 10, 473-482.	3.6	185
62	CNS voltage-dependent Na+ channel expression and distribution in an undifferentiated and differentiated CNS cell line. Brain Research, 2000, 866, 281-285.	1.1	7
63	Increasing Numbers of Synaptic Puncta during Late-Phase LTP. Neuron, 2000, 28, 245-259.	3.8	355
64	Molecular Modification of N-Cadherin in Response to Synaptic Activity. Neuron, 2000, 25, 93-107.	3.8	301
65	Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections. Journal of Comparative Neurology, 1999, 407, 453-471.	0.9	78
66	Polarized distribution and cell type-specific localization of telencephalin, an intercellular adhesion molecule. Journal of Neuroscience Research, 1998, 52, 43-53.	1.3	42
67	N-Cadherin Redistribution during Synaptogenesis in Hippocampal Neurons. Journal of Neuroscience, 1998, 18, 6892-6904.	1.7	293
68	Dendritic compartmentation of NMDA receptor mRNA in cultured hippocampal neurons. NeuroReport, 1997, 8, 823-828.	0.6	37
69	Differential Subcellular Regulation of NMDAR1 Protein and mRNA in Dendrites of Dentate Gyrus Granule Cells after Perforant Path Transection. Journal of Neuroscience, 1997, 17, 2006-2017.	1.7	99
70	Chick Ciliary Ganglion Neurons Contain Transcripts Coding for Acetylcholine Receptor-Associated Protein at Synapses (Rapsyn). Journal of Neuroscience, 1997, 17, 5016-5026.	1.7	27
71	Activity-Independent Segregation of Excitatory and Inhibitory Synaptic Terminals in Cultured Hippocampal Neurons. Journal of Neuroscience, 1996, 16, 6424-6432.	1.7	67
72	Expression and polarization of VGF in developing hippocampal neurons. Developmental Brain Research, 1996, 96, 219-228.	2.1	26

#	Article	IF	CITATIONS
73	Compartmentation of alpha-internexin and neurofilament triplet proteins in cultured hippocampal neurons. Journal of Neurocytology, 1996, 25, 181-196.	1.6	70
74	Decreased expression of the alpha subunit of Ca2+/calmodulin-dependent protein kinase type II rnRNA in the adult rat CNS following recurrent limbic seizures. Molecular Brain Research, 1995, 32, 221-232.	2.5	29
75	Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory- motor cortex: comparison with GAD-67 expression. Journal of Neuroscience, 1994, 14, 611-629.	1.7	140
76	Activity-dependent Changes in GAD and Preprotachykinin mRNAs in Visual Cortex of Adult Monkeys. Cerebral Cortex, 1994, 4, 40-51.	1.6	124
77	Characterization of GABAergic neurons in hippocampal cell cultures. Journal of Neurocytology, 1994, 23, 279-295.	1.6	176
78	Dendritic localization of type II calcium calmodulin-dependent protein kinase mRNA in normal and reinnervated rat hippocampus. Neuroscience, 1992, 46, 851-857.	1.1	57
79	Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+/calmodulin protein kinase gene expression in the rat centrat nervous system. Neuroscience, 1992, 46, 825-849.	1.1	222
80	Developmental expression of brain derived neurotrophic factor mRNA by neurons of fetal and adult monkey prefrontal cortex. Developmental Brain Research, 1992, 70, 53-63.	2.1	68
81	In situ hybridization reveals VIP precursor mRNA-containing neurons in monkey and rat neocortex. Molecular Brain Research, 1991, 9, 169-174.	2.5	16
82	Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey. Journal of Neuroscience, 1991, 11, 1540-1564.	1.7	167
83	Activity-dependent Regulation of Gene Expression in Adult Monkey Visual Cortex. Cold Spring Harbor Symposia on Quantitative Biology, 1990, 55, 481-490.	2.0	4
84	Expression of glutamic acid decarboxylase mRNA in normal and monocularly deprived cat visual cortex. Molecular Brain Research, 1989, 5, 279-287.	2.5	46
85	A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer's disease. Brain Research, 1987, 416, 331-336.	1.1	164