
Dalila Darmoul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9745372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer. Genes, 2021, 12, 749.	2.4	3
2	Insights into the activity control of the kallikrein-related peptidase 6: small-molecule modulators and allosterism. Biological Chemistry, 2018, 399, 1073-1078.	2.5	5
3	Kallikrein-related peptidase 7 overexpression in melanoma cells modulates cell adhesion leading to a malignant phenotype. Biological Chemistry, 2018, 399, 1099-1105.	2.5	10
4	Advanced high-grade serous ovarian cancer: inverse association of KLK13 and KLK14 mRNA levels in tumor tissue and patients' prognosis. Journal of Cancer Research and Clinical Oncology, 2018, 144, 1109-1118.	2.5	5
5	Aberrant expression of kallikreinâ€related peptidase 7 is correlated with human melanoma aggressiveness by stimulating cell migration and invasion. Molecular Oncology, 2017, 11, 1330-1347.	4.6	14
6	Kallikrein-related peptidase 7 (KLK7) is a proliferative factor that is aberrantly expressed in human colon cancer. Biological Chemistry, 2014, 395, 1075-1086.	2.5	32
7	5th Annual International Symposium on Kallikreins and Kallikrein-Related Peptidases. Clinical Chemistry and Laboratory Medicine, 2014, 52, .	2.3	1
8	15 Kallikrein-related Peptidases (KLKs), Proteinase-mediated Signaling and Proteinase-activated Receptors (PARs). , 2012, , 373-398.		1
9	Kallikrein-related peptidase signaling in colon carcinoma cells: targeting proteinase-activated receptors. Biological Chemistry, 2012, 393, 413-420.	2.5	24
10	Abstract LB-296: Allikrein 14 induces epithelial-mesenchymal transition-like changes in colon cancer cells. , 2012, , .		0
11	Kallikrein-Related Peptidase 14 Acts on Proteinase-Activated Receptor 2 to Induce Signaling Pathway in Colon Cancer Cells. American Journal of Pathology, 2011, 179, 2625-2636.	3.8	47
12	Kallikrein-Related Peptidase 4. American Journal of Pathology, 2010, 176, 1452-1461.	3.8	60
13	Abstract 4104: Protease-activated receptor 2, a KLK14 target in colon cancer cells. , 2010, , .		0
14	Aberrant expression of proteinaseâ€activated receptor 4 promotes colon cancer cell proliferation through a persistent signaling that involves Src and ErbBâ€2 kinase. International Journal of Cancer, 2009, 124, 1517-1525.	5.1	46
15	PAR-2 activation increases human intestinal mucin secretion through EGFR transactivation. Biochemical and Biophysical Research Communications, 2007, 364, 689-694.	2.1	15
16	Mast Cell Tryptase Controls Paracellular Permeability of the Intestine. Journal of Biological Chemistry, 2005, 280, 31936-31948.	3.4	286
17	Leptin and Ob-Rb Receptor Isoform in the Human Digestive Tract during Fetal Development. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6177-6184.	3.6	45
18	Protease-activated Receptor 2 in Colon Cancer. Journal of Biological Chemistry, 2004, 279, 20927-20934.	3.4	181

DALILA DARMOUL

#	Article	IF	CITATIONS
19	Activation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation. Molecular Cancer Research, 2004, 2, 514-22.	3.4	39
20	Activation of Proteinase-Activated Receptor 1 Promotes Human Colon Cancer Cell Proliferation Through Epidermal Growth Factor Receptor Transactivation. Molecular Cancer Research, 2004, 2, 514-522.	3.4	93
21	Aberrant Expression and Activation of the Thrombin Receptor Protease-Activated Receptor-1 Induces Cell Proliferation and Motility in Human Colon Cancer Cells. American Journal of Pathology, 2003, 162, 1503-1513.	3.8	184
22	Modulation of Mouse Paneth Cell α-Defensin Secretion by mIKCa1, a Ca2+-activated, Intermediate Conductance Potassium Channel. Journal of Biological Chemistry, 2002, 277, 3793-3800.	3.4	90
23	Trypsin is produced by and activates protease-activated receptor-2 in human cancer colon cells. Life Sciences, 2002, 70, 1359-1367.	4.3	43
24	Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2. British Journal of Cancer, 2001, 85, 772-779.	6.4	132
25	Expression of functional protease-activated receptors (PARs) for thrombin and trypsin in human colon cancer cells: Role in cell proliferation. Gastroenterology, 2000, 118, A688.	1.3	0
26	The calcium-activated potassium channel, mIKCa1, is paneth cell-specific in mouse small intestinal epithelium and functions in the secretory response. Gastroenterology, 2000, 118, A96.	1.3	0
27	Cryptdin gene expression in developing mouse small intestine. American Journal of Physiology - Renal Physiology, 1997, 272, G197-G206.	3.4	41
28	Characterisation of a human homologue of a yeast cell division cycle gene, MCM6, located adjacent to the 5′ end of the lactase gene on chromosome 2q21. FEBS Letters, 1996, 398, 135-140.	2.8	26
29	Positional specificity of defensin gene expression reveals Paneth cell heterogeneity in mouse small intestine. American Journal of Physiology - Renal Physiology, 1996, 271, G68-G74.	3.4	29
30	Regional localization ofDPP4 (aliasCD26 andADCP2) to chromosome 2q24. Somatic Cell and Molecular Genetics, 1994, 20, 345-351.	0.7	4
31	Human Intestinal VIP Receptor: Cloning and Functional Expression of Two cDNA Encoding Proteins with Different N-Terminal Domains. Biochemical and Biophysical Research Communications, 1994, 200, 769-776.	2.1	146
32	Regional Expression of Epithelial Dipeptidyl Peptidase IV in the Human Intestines. Biochemical and Biophysical Research Communications, 1994, 203, 1224-1229.	2.1	69
33	Characterization of a common VIP-PACAP receptor in human small intestinal epithelium. American Journal of Physiology - Endocrinology and Metabolism, 1993, 264, E294-E300.	3.5	18
34	Common VIP / PACAP receptor in human small intestinal epithelium. Regulatory Peptides, 1992, 40, 242.	1.9	1
35	Expression and localization of CLUT-5 in Caco-2 cells, human small intestine, and colon. American Journal of Physiology - Renal Physiology, 1992, 263, G312-G318.	3.4	55
36	Decrease of mRNA levels and biosynthesis of sucrase-isomaltase but not dipeptidylpeptidase IV in forskolin or monensin-treated Caco-2 cells. Experientia, 1991, 47, 1211-1215.	1.2	15

DALILA DARMOUL

#	Article	IF	CITATIONS
37	N-Glycosylation modification of proteins is an early marker of the enterocytic differentiation process of HT-29 cells. Reproduction, Nutrition, Development, 1990, 30, 325-330.	1.9	3
38	Isolation of a cDNA probe for the human intestinal dipeptidylpeptidase IV and assignment of the gene locus DPP4 to chromosome 2. Annals of Human Genetics, 1990, 54, 191-197.	0.8	43
39	Reversible forskolin-induced impairment of sucrase-isomaltase mRNA levels, biosynthesis, and transport to the brush border membrane in Caco-2 cells. Journal of Cellular Physiology, 1989, 141, 627-635.	4.1	47
40	Activity of 3β-hydroxysteroid dehydrogenase/isomerase in the fetal rat ovary. The Journal of Steroid Biochemistry, 1988, 31, 839-843.	1.1	11
41	Effects of busulfan on ovarian folliculogenesis, steroidogenesis and anti-müllerian activity of rat neonates. European Journal of Endocrinology, 1988, 118, 218-226.	3.7	16