Jonathan Painter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/97450/publications.pdf Version: 2024-02-01

Ιωνατήαν Ραιντέρ

#	Article	IF	CITATIONS
1	Knife cut marks inflicted by different blade types and the changes induced by heat: a dimensional and morphological study. International Journal of Legal Medicine, 2022, 136, 329-342.	2.2	5
2	A scanning electron microscopy study of projectile entry fractures in cortical bone; genesis and microarchitectural features. International Journal of Legal Medicine, 2022, 136, 629-648.	2.2	0
3	A comparison of the ballistic behaviour of conventionally sintered and additively manufactured alumina. Defence Technology, 2020, 16, 275-282.	4.2	13
4	Pressure tolerance of <i>Artemia</i> cysts compressed in water medium. High Pressure Research, 2019, 39, 293-300.	1.2	1
5	On differences in the equation-of-state for a selection of seven representative mammalian tissue analogue materials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 586-593.	3.1	5
6	On a novel graded areal density solution to facilitate ramp wave generation in plate-impact studies. AIP Conference Proceedings, 2017, , .	0.4	2
7	On the influence of texture on spall evolution in the HCP materials Ti-6Al-4V and Zr. AIP Conference Proceedings, 2017, , .	0.4	0
8	On the response of Escherichia coli to high rates of deformation. AIP Conference Proceedings, 2017, , .	0.4	2
9	The shock response and suitability of Synbone $\hat{A}^{\textcircled{0}}$ as a tissue simulant. AIP Conference Proceedings, 2017, , .	0.4	3
10	On the effects of powder morphology on the post-comminution ballistic strength of ceramics. International Journal of Impact Engineering, 2017, 100, 46-55.	5.0	5
11	Tolerance of <i>Artemia</i> to static and shock pressure loading. Journal of Physics: Conference Series, 2017, 950, 042002.	0.4	0
12	Investigation of the high-strain rate (shock and ballistic) response of the elastomeric tissue simulant Perma-Gel®. International Journal of Impact Engineering, 2016, 94, 74-82.	5.0	10
13	lsotopic investigation into the raw materials of Late Bronze Age glass making. Journal of Archaeological Science, 2015, 62, 153-160.	2.4	46
14	On the dynamic tensile strength of Zirconium. Journal of Physics: Conference Series, 2014, 500, 112004.	0.4	1
15	The shock and spall response of AA 7010-T7651. Journal of Physics: Conference Series, 2014, 500, 112032.	0.4	2
16	On the importance of encapsulation environment for lateral gauges. , 2012, , .		1
17	Numerical classification of curvilinear structures for the identification of pistol barrels. Forensic Science International, 2012, 220, 197-209.	2.2	2
18	Effects of different needles and substrates on CuInS2 deposited by electrostatic spray deposition. Thin Solid Films, 2011, 519, 3544-3551.	1.8	8

JONATHAN PAINTER

#	Article	IF	CITATIONS
19	Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors. Thin Solid Films, 2011, 519, 7438-7443.	1.8	119
20	Inelastic deformation and failure of tungsten carbide under ballistic-loading conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7638-7645.	5.6	10
21	Evaluation of different deposition conditions on thin films deposited by electrostatic spray deposition using a uniformity test. Thin Solid Films, 2010, 518, 4821-4827.	1.8	13
22	A method to quantify the degree of uniformity of thickness of thin films. Thin Solid Films, 2008, 516, 8493-8497.	1.8	7
23	An assessment of surface heating during ion beam analysis II: Application to biological materials. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 680-683.	1.4	4
24	A software tool enabling the analysis of small lateral features without the use of a micro-beam. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 789-791.	1.4	6
25	In defence of Rome: a metallographic investigation of Roman ferrous armour from Northern Britain. Journal of Archaeological Science, 2005, 32, 241-250.	2.4	12
26	Bath pH Dependence on the Structural and Optical Properties of Chemical Bath Deposited CdS Thin Films. Materials Research Society Symposia Proceedings, 2004, 836, L5.35.1.	0.1	1
27	Dendritic Culn Films Grown by Electroless Deposition. Materials Research Society Symposia Proceedings, 2004, 836, L5.34.1.	0.1	0
28	The structural features of TiO2 thin films formed by pyrosol methods. Journal of Materials Science: Materials in Electronics, 2003, 14, 573-577.	2.2	4
29	Sulfur diffusion in cadmium telluride thin films. Thin Solid Films, 2003, 431-432, 73-77.	1.8	12
30	Structural dynamics in CdS–CdTe thin films. Thin Solid Films, 2000, 361-362, 1-8.	1.8	27
31	Novel depth profiling in Cds-CdTe thin films. Thin Solid Films, 2000, 361-362, 234-238.	1.8	6
32	The crystal structure of CdS–CdTe thin film heterojunction solar cells. Thin Solid Films, 1999, 339, 299-304.	1.8	20
33	The structural changes in CdS-CdTe thin films due to annealing. Journal of Electronic Materials, 1999, 28, 112-117.	2.2	23