David J Arnot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9744346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Depthâ€ofâ€Discharge Zinc Rechargeability Enabled by a Selfâ€Assembled Polymeric Coating. Advanced Energy Materials, 2021, 11, 2101594.	19.5	51
2	Thick Electrode Design for Facile Electron and Ion Transport: Architectures, Advanced Characterization, and Modeling. Accounts of Materials Research, 2022, 3, 472-483.	11.7	23
3	Zincate-Blocking-Functionalized Polysulfone Separators for Secondary Zn–MnO ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 50406-50417.	8.0	21
4	Rechargeable Alkaline Zinc/Copper Oxide Batteries. ACS Applied Energy Materials, 2021, 4, 7073-7082.	5.1	13
5	Morphology and Dynamics in Hydroxide-Conducting Polysulfones. ACS Applied Polymer Materials, 2022, 4, 2470-2480.	4.4	12
6	Lowâ€Oxidized Siloxene Nanosheets with High Capacity, Capacity Retention, and Rate Capability in Lithiumâ€Based Batteries. Advanced Materials Interfaces, 2022, 9, .	3.7	8
7	Effect of Temperature and FEC on Silicon Anode Heat Generation Measured by Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021, 168, 110509.	2.9	7
8	Bismuth Detection in Alkaline Electrolyte via Anodic Stripping Voltammetry for Battery Separator Evaluation. Electroanalysis, 2021, 33, 797-803.	2.9	6
9	Hydroxyl Conducting Hydrogels Enable Low-Maintenance Commercially Sized Rechargeable Zn–MnO2 Batteries for Use in Solar Microgrids. Polymers, 2022, 14, 417.	4.5	6
10	Rechargeable alkaline Zn–Cu batteries enabled by carbon coated Cu/Bi particles. Journal of Power Sources, 2022, 529, 231168.	7.8	5
11	The advent of membrane-less zinc-anode aqueous batteries with lithium battery-like voltage. Materials	12.2	4