
Yasuharu Takaku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9744262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microscopy and biomimetics: the NanoSuit® method and image retrieval platform. Microscopy (Oxford, England), 2022, 71, 1-12.	1.5	2
2	Hydrophobic-hydrophilic crown-like structure enables aquatic insects to reside effectively beneath the water surface. Communications Biology, 2021, 4, 708.	4.4	6
3	Antenna Cleaning Is Essential for Precise Behavioral Response to Alarm Pheromone and Nestmate–Non-Nestmate Discrimination in Japanese Carpenter Ants (Camponotus japonicus). Insects, 2021, 12, 773.	2.2	8
4	The NanoSuit method: a novel histological approach for examining paraffin sections in a nondestructive manner by correlative light and electron microscopy. Laboratory Investigation, 2020, 100, 161-173.	3.7	26
5	In situ elemental analyses of living biological specimens using â€~NanoSuit' and EDS methods in FE-SEM. Scientific Reports, 2020, 10, 14574.	3.3	12
6	Imaging dataset of fresh hydrous plants obtained by field-emission scanning electron microscopy conducted using a protective NanoSuit. PLoS ONE, 2020, 15, e0232992.	2.5	3
7	Living Organisms under an Electron Microscope: the NanoSuit® Method aiming for Medical and Industrial Applications. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 517-522.	0.3	1
8	Liquid Marbles in Nature: Craft of Aphids for Survival. Langmuir, 2019, 35, 6169-6178.	3.5	27
9	Living Organisms under an Electron Microscope: the NanoSuit [®] . Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 287-290.	0.3	0
10	A â€~NanoSuit' successfully protects petals of cherry blossoms in high vacuum: examination of living plants in an FE-SEM. Scientific Reports, 2018, 8, 1685.	3.3	11
11	A modified â€~NanoSuit®' preserves wet samples in high vacuum: direct observations on cells and tissues in field-emission scanning electron microscopy. Royal Society Open Science, 2017, 4, 160887.	2.4	18
12	A Modified "NanoSuit [®] ―Preserves Living Wet Samples in High Vacuum. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2017, 68, 178-180.	0.2	0
13	The “NanoSuit [®] ” as Biomimetic Biofilms: A Novel Scanning Electron Microscopy for Living Organisms. Hyomen Kagaku, 2016, 37, 202-206.	0.0	0
14	A Thin Polymer Membrane, the NanoSuit [®] , for the Observation of Living and Wet Organisms in High-Vacuum Scanning Electron Microscope. Hyomen Kagaku, 2015, 36, 201-206.	0.0	0
15	Function and Evolutionary Origin of Unicellular Camera-Type Eye Structure. PLoS ONE, 2015, 10, e0118415.	2.5	31
16	A â€~NanoSuit' surface shield successfully protects organisms in high vacuum: observations on living organisms in an FE-SEM. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142857.	2.6	14
17	Dressing living organisms in a thin polymer membrane, the NanoSuit, for high-vacuum FE-SEM observation. Microscopy (Oxford, England), 2014, 63, 295-300.	1.5	21
18	Subcellular localization of the epitheliopeptide, Hym-301, in hydra. Cell and Tissue Research, 2013, 351, 419-424.	2.9	2

#	Article	IF	CITATIONS
19	A thin polymer membrane, nano-suit, enhancing survival across the continuum between air and high vacuum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7631-7635.	7.1	65
20	In Situ Preparation of Biomimetic Thin Films and Their Surface-Shielding Effect for Organisms in High Vacuum. PLoS ONE, 2013, 8, e78563.	2.5	12
21	Microtubules are involved in regulating body length in hydra. Developmental Biology, 2011, 350, 228-237.	2.0	6
22	Motility of endodermal epithelial cells plays a major role in reorganizing the two epithelial layers in Hydra. Mechanisms of Development, 2005, 122, 109-122.	1.7	19