Dimas Echeverria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9742899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing. Molecular Therapy, 2016, 24, 1836-1847.	8.2	351
2	RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nature Biotechnology, 2018, 36, 1164-1173.	17.5	126
3	A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nature Biotechnology, 2019, 37, 884-894.	17.5	126
4	Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Research, 2018, 46, 2185-2196.	14.5	125
5	Diverse lipid conjugates for functional extra-hepatic siRNA delivery <i>in vivo</i> . Nucleic Acids Research, 2019, 47, 1082-1096.	14.5	122
6	Visualization of self-delivering hydrophobically modified siRNA cellular internalization. Nucleic Acids Research, 2017, 45, 15-25.	14.5	119
7	Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways. Nucleic Acids Research, 2019, 47, 1070-1081.	14.5	87
8	5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Research, 2017, 45, 7581-7592.	14.5	83
9	Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Nature Communications, 2018, 9, 2641.	12.8	83
10	Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain. Molecular Therapy - Nucleic Acids, 2016, 5, e344.	5.1	67
11	Optimized Cholesterol-siRNA Chemistry Improves Productive Loading onto Extracellular Vesicles. Molecular Therapy, 2018, 26, 1973-1982.	8.2	65
12	Serum Deprivation of Mesenchymal Stem Cells Improves Exosome Activity and Alters Lipid and Protein Composition. IScience, 2019, 16, 230-241.	4.1	61
13	The valency of fatty acid conjugates impacts siRNA pharmacokinetics, distribution, and efficacy in vivo. Journal of Controlled Release, 2019, 302, 116-125.	9.9	48
14	Pharmacokinetic Profiling of Conjugated Therapeutic Oligonucleotides: A High-Throughput Method Based Upon Serial Blood Microsampling Coupled to Peptide Nucleic Acid Hybridization Assay. Nucleic Acid Therapeutics, 2017, 27, 323-334.	3.6	37
15	Transvascular Delivery of Hydrophobically Modified siRNAs: Gene Silencing in the Rat Brain upon Disruption of the Blood-Brain Barrier. Molecular Therapy, 2018, 26, 2580-2591.	8.2	36
16	Nuclear Localization of Huntingtin mRNA Is Specific to Cells of Neuronal Origin. Cell Reports, 2018, 24, 2553-2560.e5.	6.4	34
17	Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles. Molecular Therapy, 2018, 26, 1520-1528.	8.2	31
18	Improving the Health Benefits of Snap Bean: Genome-Wide Association Studies of Total Phenolic Content. Nutrients, 2019, 11, 2509.	4.1	27

DIMAS ECHEVERRIA

#	Article	IF	CITATIONS
19	Single-Stranded Phosphorothioated Regions Enhance Cellular Uptake of Cholesterol-Conjugated siRNA but Not Silencing Efficacy. Molecular Therapy - Nucleic Acids, 2020, 21, 991-1005.	5.1	22
20	Cell Type Impacts Accessibility of mRNA to Silencing by RNA Interference. Molecular Therapy - Nucleic Acids, 2020, 21, 384-393.	5.1	20
21	An RNAi therapeutic targeting hepatic DGAT2 in a genetically obese mouse model of nonalcoholic steatohepatitis. Molecular Therapy, 2022, 30, 1329-1342.	8.2	18
22	Efficient Gene Silencing in Brain Tumors with Hydrophobically Modified siRNAs. Molecular Cancer Therapeutics, 2018, 17, 1251-1258.	4.1	14
23	2′-O-Methyl at 20-mer Guide Strand 3′ Termini May Negatively Affect Target Silencing Activity of Fully Chemically Modified siRNA. Molecular Therapy - Nucleic Acids, 2020, 21, 266-277.	5.1	10
24	Structurally constrained phosphonate internucleotide linkage impacts oligonucleotide-enzyme interaction, and modulates siRNA activity and allele specificity. Nucleic Acids Research, 2021, 49, 12069-12088.	14.5	8