
Xiangwu Nou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9740534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of Free Chlorine Concentrations Needed To Prevent Escherichia coli O157:H7 Cross-Contamination during Fresh-Cut Produce Wash. Journal of Food Protection, 2011, 74, 352-358.	1.7	158
2	Effect of Chemical Dehairing on the Prevalence of Escherichia coli O157:H7 and the Levels of Aerobic Bacteria and Enterobacteriaceae on Carcasses in a Commercial Beef Processing Plant. Journal of Food Protection, 2003, 66, 2005-2009.	1.7	121
3	A pilot plant scale evaluation of a new process aid for enhancing chlorine efficacy against pathogen survival and cross-contamination during produce wash. International Journal of Food Microbiology, 2012, 158, 133-139.	4.7	120
4	Dynamic Effects of Free Chlorine Concentration, Organic Load, and Exposure Time on the Inactivation of Salmonella, Escherichia coli O157:H7, and Non-O157 Shiga Toxin–Producing E. coli. Journal of Food Protection, 2013, 76, 386-393.	1.7	91
5	Enhanced Inactivation of Salmonella and Pseudomonas Biofilms on Stainless Steel by Use of T-128, a Fresh-Produce Washing Aid, in Chlorinated Wash Solutions. Applied and Environmental Microbiology, 2012, 78, 6789-6798.	3.1	82
6	Wholeâ€Leaf Wash Improves Chlorine Efficacy for Microbial Reduction and Prevents Pathogen Crossâ€Contamination during Freshâ€Cut Lettuce Processing. Journal of Food Science, 2010, 75, M283-90.	3.1	75
7	Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation. Food Microbiology, 2018, 70, 120-128.	4.2	71
8	Dual-species biofilm formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing facilities. International Journal of Food Microbiology, 2014, 171, 15-20.	4.7	54
9	Comparison of the growth of Escherichia coli O157: H7 and O104: H4 during sprouting and microgreen production from contaminated radish seeds. Food Microbiology, 2014, 44, 60-63.	4.2	54
10	Chlorine Stabilizer Tâ€128 Enhances Efficacy of Chlorine against Crossâ€Contamination byâ€, <i>E. coli</i> â€,O157:H7 andâ€, <i>Salmonella</i> â€,in Freshâ€Cut Lettuce Processing. Journal of Food Science, 2011, M218-24.	75.1	53
11	Inactivation dynamics of Salmonella enterica , Listeria monocytogenes , and Escherichia coli O157:H7 in wash water during simulated chlorine depletion and replenishment processes. Food Microbiology, 2015, 50, 88-96.	4.2	52
12	Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures. Food Microbiology, 2018, 73, 73-84.	4.2	50
13	Native Microflora in Fresh-Cut Produce Processing Plants and Their Potentials for Biofilm Formation. Journal of Food Protection, 2013, 76, 827-832.	1.7	48
14	Proliferation of Escherichia coli 0157:H7 in Soil-Substitute and Hydroponic Microgreen Production Systems. Journal of Food Protection, 2015, 78, 1785-1790.	1.7	43
15	Growth and survival of Salmonella enterica and Listeria monocytogenes on fresh-cut produce and their juice extracts: Impacts and interactions of food matrices and temperature abuse conditions. Food Control, 2019, 100, 300-304.	5.5	42
16	Ralstonia insidiosa serves as bridges in biofilm formation by foodborne pathogens Listeria monocytogenes, Salmonella enterica, and Enterohemorrhagic Escherichia coli. Food Control, 2016, 65, 14-20.	5.5	36
17	Improvement of Immunomagnetic Separation for Escherichia coli O157:H7 Detection by the PickPen Magnetic Particle Separation Device. Journal of Food Protection, 2006, 69, 2870-2874.	1.7	31
18	Growth of Salmonella enterica and Listeria monocytogenes on Fresh-Cut Cantaloupe under Different Temperature Abuse Scenarios, Journal of Food Protection, 2015, 78, 1125-1131	1.7	31

XIANGWU NOU

#	Article	IF	CITATIONS
19	Quantitative Proteomic Analysis of <i>Staphylococcus aureus</i> Treated With Punicalagin, a Natural Antibiotic From Pomegranate That Disrupts Iron Homeostasis and Induces SOS. Proteomics, 2018, 18, e1700461.	2.2	28
20	Development of an Algorithm for Feed-Forward Chlorine Dosing of Lettuce Wash Operations and Correlation of Chlorine Profile with Escherichia coli O157:H7 Inactivation. Journal of Food Protection, 2014, 77, 558-566.	1.7	27
21	Effects of Environmental Parameters on the Dual-Species Biofilms Formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a Strong Biofilm Producer Isolated from a Fresh-Cut Produce Processing Plant. Journal of Food Protection, 2015, 78, 121-127.	1.7	27
22	Salmonella inactivation and cross-contamination on cherry and grape tomatoes under simulated wash conditions. Food Microbiology, 2020, 87, 103359.	4.2	25
23	Susceptibility of foodborne pathogens to sanitizers in produce rinse water and potential induction of viable but non-culturable state. Food Control, 2020, 112, 107138.	5.5	23
24	Impact of routine sanitation on the microbiomes in a fresh produce processing facility. International Journal of Food Microbiology, 2019, 294, 31-41.	4.7	22
25	Role of Extracellular Structures of Escherichia coli O157:H7 in Initial Attachment to Biotic and Abiotic Surfaces. Applied and Environmental Microbiology, 2015, 81, 4720-4727.	3.1	21
26	Ralstonia insidiosa induces cell aggregation of Listeria monocytogenes. Food Control, 2016, 67, 303-309.	5.5	21
27	Feasibility of colloidal silver SERS for rapid bacterial screening. Sensing and Instrumentation for Food Quality and Safety, 2009, 3, 100-107.	1.5	20
28	Microbiome convergence following sanitizer treatment and identification of sanitizer resistant species from spinach and lettuce rinse water. International Journal of Food Microbiology, 2020, 318, 108458.	4.7	19
29	Effects of Postharvest Handling Conditions on Internalization and Growth of Salmonella enterica in Tomatoes. Journal of Food Protection, 2014, 77, 365-370.	1.7	17
30	Microbiomes in Ground Water and Alternative Irrigation Water, and Spinach Microbiomes Impacted by Irrigation with Different Types of Water. Phytobiomes Journal, 2019, 3, 137-147.	2.7	17
31	Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4. International Journal of Food Microbiology, 2016, 229, 44-51.	4.7	16
32	Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis. Applied and Environmental Microbiology, 2016, 82, 4371-4378.	3.1	13
33	Effects of temperature abuse on the growth and survival of Listeria monocytogenes on a wide variety of whole and fresh-cut fruits and vegetables during storage. Food Control, 2022, 137, 108919.	5.5	13
34	Enhanced Chlorine Efficacy against Bacterial Pathogens in Wash Solution with High Organic Loads. Journal of Food Processing and Preservation, 2012, 36, 560-566.	2.0	12
35	Edible and water-soluble corn zein coating impregnated with nisin for Listeria monocytogenes reduction on nectarines and apples. Postharvest Biology and Technology, 2022, 185, 111811.	6.0	10
36	Survival of Salmonella enterica and shifts in the culturable mesophilic aerobic bacterial community as impacted by tomato wash water particulate size and chlorine treatment. Food Microbiology, 2020, 90, 103470.	4.2	9

XIANGWU NOU

#	Article	IF	CITATIONS
37	Enhanced biofilm formation in dual-species culture of Listeria monocytogenes and Ralstonia insidiosa . AIMS Microbiology, 2017, 3, 774-783.	2.2	9
38	Differential Effects of Growth Medium Salinity on Biofilm Formation of Two Salmonella enterica Strains. Journal of Food Protection, 2020, 83, 196-203.	1.7	8
39	Dynamics of Listeria monocytogenes and the microbiome on fresh-cut cantaloupe and romaine lettuce during storage at refrigerated and abusive temperatures. International Journal of Food Microbiology, 2022, 364, 109531.	4.7	6
40	Factors Impacting Chemical and Microbiological Quality of Wash Water during Simulated Dump Tank Wash of Grape Tomatoes. Journal of Food Protection, 2021, 84, 695-703.	1.7	4
41	Genome Sequences of Ralstonia insidiosa Type Strain ATCC 49129 and Strain FC1138, a Strong Biofilm Producer Isolated from a Fresh-Cut Produce-Processing Plant. Genome Announcements, 2016, 4, .	0.8	2
42	Salmonella inactivation and sponge/microfiber mediated cross-contamination during papaya wash with chlorine or peracetic acid as sanitizer. Food Microbiology, 2021, 95, 103677.	4.2	2
43	Genome Sequences of Brevundimonas naejangsanensis Strain FS1091 and Bacillus amyloliquefaciens Strain FS1092, Isolated from a Fresh-Cut-Produce-Processing Plant. Microbiology Resource Announcements, 2020, 9, .	0.6	1
44	Evaluation of DNA barcode abiotic surrogate as a predictor for inactivation of E. coli O157:H7 during spinach washing. LWT - Food Science and Technology, 2021, 145, 111321.	5.2	0
45	Novel Wash Aid T-128 Enhances the Efficacy of Chlorine against Salmonella on Tomatoes. Journal of Microbiology & Experimentation, 2015, 2, .	0.2	Ο