Tadao Okayasu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9739375/publications.pdf

Version: 2024-02-01

1307594 1281871 26 139 7 11 citations g-index h-index papers 27 27 27 76 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Speech recognition scores in bilateral and unilateral atretic ears. International Journal of Audiology, 2022, 61, 663-669.	1.7	1
2	Diagnostic Strategy for Dizzy Patients with Unknown Origin. Practica Otologica, 2022, 115, 256-257.	0.0	O
3	Behavioral and Immunohistochemical Evidence for Suppressive Effects of Goshajinkigan on Salicylate-Induced Tinnitus in Rats. Brain Sciences, 2022, 12, 587.	2.3	2
4	Perception Mechanism of Bone-Conducted Ultrasound and Its Clinical Use. Audiology Research, 2021, 11, 244-253.	1.8	3
5	Long-term (16–26 years) follow-up outcome of steroid therapy in refractory autoimmune sensorineural hearing loss. Journal of Autoimmunity, 2021, 121, 102664.	6.5	4
6	Word Categorization of Vowel Durational Changes in Speech-Modulated Bone-Conducted Ultrasound. Audiology Research, 2021, 11, 357-364.	1.8	1
7	Prevalence of Macrophages Within the Cochlear Vessels Following Cochlear Implantation in the Human: An Immunohistopathological Study Using Anti-Iba1 Antibody. Otology and Neurotology, 2021, 42, e1470-e1477.	1.3	4
8	Endolymphatic Sac Drainage Surgery and Plasma Stress Hormone Vasopressin Levels in Meniere's Disease. Frontiers in Neurology, 2021, 12, 722217.	2.4	7
9	Effect of transducer placements on thresholds in ears with an abnormal ear canal and severe conductive hearing loss. Laryngoscope Investigative Otolaryngology, 2021, 6, 1429-1435.	1.5	4
10	Indications of Kampo Medicine for Neuro-Otologic Disease. Kampo Medicine, 2021, 72, 1-8.	0.1	2
11	Sensorineural Hearing Loss in Leukemia: A Case Report Showing Intravascular Coagulation in the Cochlea and Vestibular Labyrinth. Annals of Otology, Rhinology and Laryngology, 2019, 128, 689-695.	1.1	4
12	Information Sources Motivating the Use of Cartilage Conduction Hearing Aids. Journal of Otolaryngology of Japan, 2019, 122, 1522-1527.	0.1	1
13	Temporal window of integration estimated by omission in bone-conducted ultrasound. Neuroscience Letters, 2019, 696, 1-6.	2.1	5
14	A Case of Pharyngeal and Esophageal Submucosal Abscess Cured by Conservative Treatment. Practica Otologica, 2019, 112, 383-390.	0.0	0
15	Focal Degeneration of Vestibular Neuroepithelium in the Cristae Ampullares of Three Human Subjects. Otology and Neurotology, 2018, 39, e1100-e1110.	1.3	1
16	Negative prognostic factors for psychological conditions in patients with audiovestibular diseases. Journal of Otolaryngology of Japan, 2017, 120, 884-885.	0.1	0
17	Negative prognostic factors for psychological conditions in patients with audiovestibular diseases. Auris Nasus Larynx, 2016, 43, 632-636.	1.2	12
18	Surgical results and psychological status in patients with intractable MéniÃ"re's disease. Auris Nasus Larynx, 2016, 43, 287-291.	1.2	17

#	Article	IF	CITATION
19	An examination of the effects of broadband air-conduction masker onÂthe speech intelligibility of speech-modulated bone-conduction ultrasound. Hearing Research, 2014, 317, 41-49.	2.0	8
20	Evaluation of prosodic and segmental change in speech-modulated bone-conducted ultrasound by mismatch fields. Neuroscience Letters, 2014, 559, 117-121.	2.1	5
21	Suppression of Subsequent N1m Amplitude When the Masker Frequency is Different from the Signal. Journal of Experimental Neuroscience, 2014, 8, JEN.S13507.	2.3	0
22	Human ultrasonic hearing is induced by a direct ultrasonic stimulation of the cochlea. Neuroscience Letters, 2013, 539, 71-76.	2.1	11
23	Duration-dependent growth of N1m for speech-modulated bone-conducted ultrasound. Neuroscience Letters, 2011, 495, 72-76.	2.1	6
24	Peripheral perception mechanism of ultrasonic hearing. Hearing Research, 2011, 277, 176-183.	2.0	22
25	The effect of visual information in speech signals by bone-conducted ultrasound. NeuroReport, 2010, 21, 119-122.	1.2	8
26	Comparison between bone-conducted ultrasound and audible sound in speech recognition. Acta Oto-Laryngologica, 2009, 129, 34-39.	0.9	11