Jiajing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/97380/publications.pdf

Version: 2024-02-01

230014 145109 3,736 66 27 60 h-index citations g-index papers 66 66 66 5687 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrasmall gold nanorod-polydopamine hybrids for enhanced photoacoustic imaging and photothermal therapy in second near-infrared window. Nanotheranostics, 2022, 6, 79-90.	2.7	19
2	A fiber optic photoacoustic sensor for real-time heparin monitoring. Biosensors and Bioelectronics, 2022, 196, 113692.	5. 3	9
3	Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease. Chemistry of Materials, 2022, 34, 1259-1268.	3.2	16
4	A Chargeâ€Switchable Zwitterionic Peptide for Rapid Detection of SARSâ€CoVâ€2 Main Protease. Angewandte Chemie, 2022, 134, .	1.6	1
5	Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 3740-3751.	4.0	17
6	A Chargeâ€Switchable Zwitterionic Peptide for Rapid Detection of SARSâ€CoVâ€2 Main Protease. Angewandte Chemie - International Edition, 2022, 61, .	7.2	54
7	Assembly of Bioactive Nanoparticles via Metal–Phenolic Complexation. Advanced Materials, 2022, 34, e2108624.	11.1	34
8	One-Step Supramolecular Multifunctional Coating on Plant Virus Nanoparticles for Bioimaging and Therapeutic Applications. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13692-13702.	4.0	21
9	Supramolecular Assembly of Multifunctional Collagen Nanocomposite Film via Polyphenol-Coordinated Clay Nanoplatelets. ACS Applied Bio Materials, 2022, 5, 1319-1329.	2.3	4
10	Peptide-Induced Fractal Assembly of Silver Nanoparticles for Visual Detection of Disease Biomarkers. ACS Nano, 2022, 16, 6165-6175.	7.3	25
11	Enhanced Photoacoustic Detection of Heparin in Whole Blood <i>via</i> Melanin Nanocapsules Carrying Molecular Agents. ACS Nano, 2022, 16, 683-693.	7.3	19
12	Photoacoustic Enhancement of Ferricyanide-Treated Silver Chalcogenide-Coated Gold Nanorods. Journal of Physical Chemistry C, 2022, 126, 7605-7614.	1.5	4
13	Protein precoating modulates biomolecular coronas and nanocapsule–immune cell interactions in human blood. Journal of Materials Chemistry B, 2022, 10, 7607-7621.	2.9	9
14	Siteâ€Selective Coordination Assembly of Dynamic Metalâ€Phenolic Networks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
15	⟨b⟩Role of Molecular Interactions in Supramolecular Polypeptide–Polyphenol Networks for Engineering Functional Materials ⟨b⟩. Journal of the American Chemical Society, 2022, 144, 12510-12519.	6.6	19
16	Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chemical Society Reviews, 2021, 50, 4432-4483.	18.7	163
17	Programmable Phototaxis of Metal–Phenolic Particle Microswimmers. Advanced Materials, 2021, 33, e2006177.	11.1	16
18	Gold Nanorod–Melanin Hybrids for Enhanced and Prolonged Photoacoustic Imaging in the Near-Infrared-II Window. ACS Applied Materials & Interfaces, 2021, 13, 14974-14984.	4.0	43

#	Article	IF	CITATIONS
19	Metal–Phenolic Networks as Tunable Buffering Systems. Chemistry of Materials, 2021, 33, 2557-2566.	3.2	21
20	Hydro-Expandable Calcium Phosphate Micro/Nano-Particles with Controllable Size and Morphology for Mechanical Ablation. ACS Applied Nano Materials, 2021, 4, 3877-3886.	2.4	3
21	Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and <i>Ex Vivo</i> Particle–Immune Cell Interactions in Human Blood. ACS Nano, 2021, 15, 10025-10038.	7.3	27
22	Quantitatively Tracking Bio–Nano Interactions of Metal–Phenolic Nanocapsules by Mass Cytometry. ACS Applied Materials & Mass Cytometry. 35494-35505.	4.0	9
23	Mapping Aerosolized Saliva on Face Coverings for Biosensing Applications. Analytical Chemistry, 2021, 93, 11025-11032.	3.2	18
24	Stereoselective Growth of Small Molecule Patches on Nanoparticles. Journal of the American Chemical Society, 2021, 143, 12138-12144.	6.6	30
25	The Application of Organic Nanomaterials for Bioimaging, Drug Delivery, and Therapy: Spanning Various Domains. IEEE Nanotechnology Magazine, 2021, 15, 8-28.	0.9	16
26	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angewandte Chemie, 2021, 133, 20387-20392.	1.6	2
27	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angewandte Chemie - International Edition, 2021, 60, 20225-20230.	7.2	14
28	Luminescent Metalâ€Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie - International Edition, 2021, 60, 24968-24975.	7.2	27
29	Modulation of Gold Nanorod Growth via the Proteolysis of Dithiol Peptides for Enzymatic Biomarker Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45236-45243.	4.0	15
30	Versatile Polymer Nanocapsules via Redox Competition. Angewandte Chemie - International Edition, 2021, 60, 26357-26362.	7.2	15
31	Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Research, 2020, 13, 238-245.	5.8	42
32	Ordered Mesoporous Metal–Phenolic Network Particles. Journal of the American Chemical Society, 2020, 142, 335-341.	6.6	85
33	Polyphenol-Based Nanoparticles for Intracellular Protein Delivery <i>via</i> Competing Supramolecular Interactions. ACS Nano, 2020, 14, 12972-12981.	7.3	56
34	Particle engineering enabled by polyphenol-mediated supramolecular networks. Nature Communications, 2020, 11, 4804.	5.8	65
35	A synergistic optical strategy for enhanced deep-tumor penetration and therapy in the second near-infrared window. Materials Horizons, 2020, 7, 2929-2935.	6.4	33
36	Programmable Permeability of Metal–Phenolic Network Microcapsules. Chemistry of Materials, 2020, 32, 6975-6982.	3.2	38

#	Article	IF	CITATIONS
37	Templateâ€Mediated Assembly of DNA into Microcapsules for Immunological Modulation. Small, 2020, 16, e2002750.	5.2	25
38	Polyphenol-Mediated Assembly for Particle Engineering. Accounts of Chemical Research, 2020, 53, 1269-1278.	7.6	244
39	Hierarchical Graphene/Metal–Organic Framework Composites with Tailored Wettability for Separation of Immiscible Liquids. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35563-35571.	4.0	16
40	Polyphenolâ€Mediated Assembly of Proteins for Engineering Functional Materials. Angewandte Chemie, 2020, 132, 15748-15755.	1.6	17
41	Polyphenolâ€Mediated Assembly of Proteins for Engineering Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 15618-15625.	7.2	138
42	Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered delivery of functional proteins. Biomaterials, 2020, 238, 119847.	5.7	54
43	Musselâ€Inspired Dualâ€Superlyophobic Biomass Membranes for Selective Oil/Water Separation. Advanced Materials Interfaces, 2020, 7, 1901756.	1.9	25
44	Nanoengineering multifunctional hybrid interfaces using adhesive glycogen nanoparticles. Journal of Materials Chemistry B, 2020, 8, 4851-4858.	2.9	10
45	Engineering Biocoatings To Prolong Drug Release from Supraparticles. Biomacromolecules, 2019, 20, 3425-3434.	2.6	20
46	Bioinspired Production of Noniridescent Structural Colors by Adhesive Melanin-like Particles. Langmuir, 2019, 35, 9878-9884.	1.6	19
47	Functional Macromoleculeâ€Enabled Colloidal Synthesis: From Nanoparticle Engineering to Multifunctionality. Advanced Materials, 2019, 31, e1902733.	11.1	25
48	Ricocheting Droplets Moving on Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1901846.	5.6	20
49	Metal–Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles. ACS Nano, 2019, 13, 11653-11664.	7. 3	128
50	Responsive Amorphous Photonic Structures of Spherical/Polyhedral Colloidal Metal–Organic Frameworks. Advanced Optical Materials, 2019, 7, 1900522.	3.6	27
51	Selective Metal–Phenolic Assembly from Complex Multicomponent Mixtures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17714-17721.	4.0	27
52	Selfâ€Assembly of Polymerâ€Coated Plasmonic Nanocrystals: From Synthetic Approaches to Practical Applications. Macromolecular Rapid Communications, 2019, 40, e1800613.	2.0	11
53	In Vitro and In Vivo Photothermal Cancer Therapeutic Effects of Gold Nanorods Modified with Mushroom β-Glucan. Journal of Agricultural and Food Chemistry, 2018, 66, 4091-4098.	2.4	39
54	Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano, 2018, 12, 2643-2651.	7.3	294

#	Article	IF	CITATIONS
55	Magnetic nanochain integrated microfluidic biochips. Nature Communications, 2018, 9, 1743.	5.8	94
56	Stable and Biocompatible Mushroom \hat{l}^2 -Glucan Modified Gold Nanorods for Cancer Photothermal Therapy. Journal of Agricultural and Food Chemistry, 2017, 65, 9529-9536.	2.4	30
57	Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. ACS Nano, 2016, 10, 11066-11075.	7.3	109
58	Robust Nanoparticle–DNA Conjugates Based on Mussel-Inspired Polydopamine Coating for Cell Imaging and Tailored Self-Assembly. Bioconjugate Chemistry, 2016, 27, 815-823.	1.8	39
59	Versatile Core–Shell Nanoparticle@Metal–Organic Framework Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Structural Integration. ACS Nano, 2015, 9, 6951-6960.	7.3	223
60	Multifunctional Magnetic Nanochains: Exploiting Self-Polymerization and Versatile Reactivity of Mussel-Inspired Polydopamine. Chemistry of Materials, 2015, 27, 3071-3076.	3.2	81
61	Interfacial Assembly of Musselâ€Inspired Au@Ag@ Polydopamine Core–Shell Nanoparticles for Recyclable Nanocatalysts. Advanced Materials, 2014, 26, 701-705.	11.1	196
62	SERS-Encoded Nanogapped Plasmonic Nanoparticles: Growth of Metallic Nanoshell by Templating Redox-Active Polymer Brushes. Journal of the American Chemical Society, 2014, 136, 6838-6841.	6.6	174
63	Mussel-Inspired Synthesis of Polydopamine-Functionalized Graphene Hydrogel as Reusable Adsorbents for Water Purification. ACS Applied Materials & Samp; Interfaces, 2013, 5, 425-432.	4.0	633
64	Versatile Polymer Nanocapsules via Redox Competition. Angewandte Chemie, 0, , .	1.6	4
65	Luminescent Metal–Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie, 0, , .	1.6	4
66	Site‧elective Coordination Assembly of Dynamic Metal–Phenolic Networks. Angewandte Chemie, 0, , .	1.6	3