
Matthias J P Van Osch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/973769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Planning of gamma knife radiosurgery (GKR) for brain arteriovenous malformations using triple magnetic resonance angiography (triple-MRA). British Journal of Neurosurgery, 2022, 36, 217-227.	0.4	3
2	Validation of the estimation of the macrovascular contribution in multiâ€ŧimepoint arterial spin labeling MRI using a 2 omponent kinetic model. Magnetic Resonance in Medicine, 2022, 87, 85-101.	1.9	3
3	The use of variable delay multipulse chemical exchange saturation transfer for separately assessing different CEST pools in the human brain at 7T. Magnetic Resonance in Medicine, 2022, 87, 872-883.	1.9	9
4	Cerebellar Superficial Siderosis in Cerebral Amyloid Angiopathy. Stroke, 2022, 53, 552-557.	1.0	13
5	Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder. World Journal of Biological Psychiatry, 2022, 23, 643-652.	1.3	5
6	Micro- to macroscale magnetic resonance imaging of glioma. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2022, 35, 1.	1.1	1
7	The photobiology of the human circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118803119.	3.3	17
8	Perforating artery flow velocity and pulsatility in patients with carotid occlusive disease. A 7 tesla MRI study. Cerebral Circulation - Cognition and Behavior, 2022, 3, 100143.	0.4	2
9	Subjectâ€specific optimization of background suppression for arterial spin labeling magnetic resonance imaging using a feedback loop on the scanner. NMR in Biomedicine, 2022, , .	1.6	2
10	Velocityâ€selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation. Magnetic Resonance in Medicine, 2022, 88, 1528-1547.	1.9	27
11	Microvascular response to exercise varies along the length of the tibialis anterior muscle. NMR in Biomedicine, 2022, 35, .	1.6	3
12	Cerebrovascular reactivity in retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 831-840.	2.4	8
13	Hypertensive Exposure Markers by MRI in Relation to Cerebral Small Vessel Disease and Cognitive Impairment. JACC: Cardiovascular Imaging, 2021, 14, 176-185.	2.3	18
14	Cerebral Blood Flow in Patients with Severe Aortic Valve Stenosis Undergoing Transcatheter Aortic Valve Implantation. Journal of the American Geriatrics Society, 2021, 69, 494-499.	1.3	13
15	Multiâ€organ comparison of flowâ€based arterial spin labeling techniques: Spatially nonâ€selective labeling for cerebral and renal perfusion imaging. Magnetic Resonance in Medicine, 2021, 85, 2580-2594.	1.9	18
16	Combining T ₂ measurements and crusher gradients into a single ASL sequence for comparison of the measurement of water transport across the blood–brain barrier. Magnetic Resonance in Medicine, 2021, 85, 2649-2660.	1.9	8
17	Evaluation of the Robustness of Learned MR Image Reconstruction to Systematic Deviations Between Training and Test Data for the Models from the fastMRI Challenge. Lecture Notes in Computer Science, 2021, , 25-34.	1.0	3
18	Striped occipital cortex and intragyral hemorrhage: Novel magnetic resonance imaging markers for cerebral amyloid angiopathy. International Journal of Stroke, 2021, 16, 1031-1038.	2.9	5

#	Article	IF	CITATIONS
19	Are Dynamic Arterial Spin-Labeling MRA and Time-Resolved Contrast-Enhanced MRA Suited for Confirmation of Obliteration following Gamma Knife Radiosurgery of Brain Arteriovenous Malformations?. American Journal of Neuroradiology, 2021, 42, 671-678.	1.2	11
20	Cerebral blood flow and cerebrovascular reactivity are preserved in a mouse model of cerebral microvascular amyloidosis. ELife, 2021, 10, .	2.8	12
21	Exploring label dynamics of velocityâ€selective arterial spin labeling in the kidney. Magnetic Resonance in Medicine, 2021, 86, 131-142.	1.9	6
22	On the ability to exploit signal fluctuations in pseudocontinuous arterial spin labeling for inferring the major flow territories from a traditional perfusion scan. NeuroImage, 2021, 230, 117813.	2.1	0
23	Impairment of Cerebrovascular Hemodynamics in Patients With Severe and Milder Forms of Sickle Cell Disease. Frontiers in Physiology, 2021, 12, 645205.	1.3	16
24	Threeâ€dimensional gradient and spinâ€echo readout for timeâ€encoded pseudoâ€continuous arterial spin labeling: Influence of segmentation factor and flow compensation. Magnetic Resonance in Medicine, 2021, 86, 1454-1462.	1.9	6
25	Occipital Cortical Calcifications in Cerebral Amyloid Angiopathy. Stroke, 2021, 52, 1851-1855.	1.0	2
26	Timeâ€encoded golden angle radial arterial spin labeling: Simultaneous acquisition of angiography and perfusion data. NMR in Biomedicine, 2021, 34, e4519.	1.6	7
27	A split″abel design for simultaneous measurements of perfusion in distant slices by pulsed arterial spin labeling. Magnetic Resonance in Medicine, 2021, 86, 2441-2453.	1.9	6
28	Feasibility of Velocityâ€Selective Arterial Spin Labeling in Breast Cancer Patients for Noncontrastâ€Enhanced Perfusion Imaging. Journal of Magnetic Resonance Imaging, 2021, 54, 1282-1291.	1.9	8
29	Regularized joint water–fat separation with B ₀ map estimation in image space for 2Dâ€navigated interleaved EPI based diffusion MRI. Magnetic Resonance in Medicine, 2021, 86, 3034-3051.	1.9	5
30	Sex and Cardiovascular Function in Relation to Vascular Brain Injury in Patients with Cognitive Complaints. Journal of Alzheimer's Disease, 2021, 84, 261-271.	1.2	2
31	Cerebellar hemorrhages in patients with Dutch-type hereditary cerebral amyloid angiopathy. International Journal of Stroke, 2021, , 174749302110436.	2.9	0
32	Dependency of R 2 and R 2 * relaxation on Gdâ€DTPA concentration in arterial blood: Influence of hematocrit and magnetic field strength. NMR in Biomedicine, 2021, , e4653.	1.6	3
33	A Randomized Controlled Trial on the Effects of a 12-Week High- vs. Low-Intensity Exercise Intervention on Hippocampal Structure and Function in Healthy, Young Adults. Frontiers in Psychiatry, 2021, 12, 780095.	1.3	8
34	Ultra-long-TE arterial spin labeling reveals rapid and brain-wide blood-to-CSF water transport in humans. NeuroImage, 2021, 245, 118755.	2.1	26
35	Sympathetic activation by lower body negative pressure decreases kidney perfusion without inducing hypoxia in healthy humans. Clinical Autonomic Research, 2020, 30, 149-156.	1.4	4
36	Contrast leakage distant from the hematoma in patients with spontaneous ICH: A 7 T MRI study. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1002-1011.	2.4	12

#	Article	IF	CITATIONS
37	Perfusion and apparent oxygenation in the human placenta (PERFOX). Magnetic Resonance in Medicine, 2020, 83, 549-560.	1.9	20
38	Influence of the cardiac cycle on velocity selective and acceleration selective arterial spin labeling. Magnetic Resonance in Medicine, 2020, 83, 872-882.	1.9	5
39	Intracranial 3D and 4D MR Angiography Using Arterial Spin Labeling: Technical Considerations. Magnetic Resonance in Medical Sciences, 2020, 19, 294-309.	1.1	26
40	Cerebral blood flow and cognitive functioning in patients with disorders along the heart–brain axis. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12034.	1.8	15
41	An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction. IEEE Access, 2020, 8, 204825-204838.	2.6	59
42	Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling. Magnetic Resonance in Medicine, 2020, 84, 2523-2536.	1.9	9
43	ExploreASL: An image processing pipeline for multi-center ASL perfusion MRI studies. NeuroImage, 2020, 219, 117031.	2.1	80
44	Influence of labeling parameters and respiratory motion on velocityâ€selective arterial spin labeling for renal perfusion imaging. Magnetic Resonance in Medicine, 2020, 84, 1919-1932.	1.9	10
45	Systematic evaluation of velocityâ€selective arterial spin labeling settings for placental perfusion measurement. Magnetic Resonance in Medicine, 2020, 84, 1828-1843.	1.9	23
46	Patterns and characteristics of cognitive functioning in older patients approaching end stage kidney disease, the COPE-study. BMC Nephrology, 2020, 21, 126.	0.8	6
47	Current imaging modalities for diagnosing cerebral vein thrombosis – A critical review. Thrombosis Research, 2020, 189, 132-139.	0.8	35
48	Association of cardiovascular structure and function with cerebrovascular changes and cognitive function in older patients with end-stage renal disease. Aging, 2020, 12, 1496-1511.	1.4	10
49	Bias Introduced by Multiple Head Coils in MRI Research: An 8 Channel and 32 Channel Coil Comparison. Frontiers in Neuroscience, 2019, 13, 729.	1.4	28
50	Acceleration of vesselâ€selective dynamic MR Angiography by pseudocontinuous arterial spin labeling in combination with Acquisition of ConTRol and labEled images in the Same Shot (ACTRESS). Magnetic Resonance in Medicine, 2019, 81, 2995-3006.	1.9	11
51	Optimization of the spatial modulation function of vesselâ€encoded pseudo ontinuous arterial spin labeling and its application to dynamic angiography. Magnetic Resonance in Medicine, 2019, 81, 410-423.	1.9	5
52	Effects of Nilvadipine on Cerebral Blood Flow in Patients With Alzheimer Disease. Hypertension, 2019, 74, 413-420.	1.3	54
53	Nonfocal transient neurological attacks are related to cognitive impairment in patients with heart failure. Journal of Neurology, 2019, 266, 2035-2042.	1.8	1
54	Quantifying bloodâ€brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimer's and Dementia, 2019, 15, 840-858.	0.4	134

#	Article	IF	CITATIONS
55	Nonfocal transient neurological attacks in patients with carotid artery occlusion. European Stroke Journal, 2019, 4, 50-54.	2.7	2
56	Enabling freeâ€breathing background suppressed renal pCASL using fat imaging and retrospective motion correction. Magnetic Resonance in Medicine, 2019, 82, 276-288.	1.9	9
57	High temporal resolution arterial spin labeling MRI with wholeâ€brain coverage by combining timeâ€encoding with Lookâ€Locker and simultaneous multiâ€slice imaging. Magnetic Resonance in Medicine, 2019, 81, 3734-3744.	1.9	13
58	Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 191-204.	1.2	65
59	Quantifying the contrast of the human locus coeruleus in vivo at 7 Tesla MRI. PLoS ONE, 2019, 14, e0209842.	1.1	13
60	Acute effects of â^†9-tetrahydrocannabinol (THC) on resting state brain function and their modulation by COMT genotype. European Neuropsychopharmacology, 2019, 29, 766-776.	0.3	20
61	A framework for motion correction of background suppressed arterial spin labeling perfusion images acquired with simultaneous multiâ€slice EPI. Magnetic Resonance in Medicine, 2019, 81, 1553-1565.	1.9	2
62	Fast Dynamic Perfusion and Angiography Reconstruction Using an End-to-End 3D Convolutional Neural Network. Lecture Notes in Computer Science, 2019, , 25-35.	1.0	0
63	Nonâ€contrast MR imaging of bloodâ€brain barrier permeability to water. Magnetic Resonance in Medicine, 2018, 80, 1507-1520.	1.9	56
64	Photon vs. proton radiochemotherapy: Effects on brain tissue volume and perfusion. Radiotherapy and Oncology, 2018, 128, 121-127.	0.3	48
65	Comparison of perfusion signal acquired by arterial spin labeling–prepared intravoxel incoherent motion (IVIM) MRI and conventional IVIM MRI to unravel the origin of the IVIM signal. Magnetic Resonance in Medicine, 2018, 79, 723-729.	1.9	23
66	Comparison of arterial spin labeling registration strategies in the multiâ€center GENetic frontotemporal dementia initiative (GENFI). Journal of Magnetic Resonance Imaging, 2018, 47, 131-140.	1.9	41
67	Influence of the cardiac cycle on pCASL: cardiac triggering of the end-of-labeling. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 223-233.	1.1	13
68	Acceleration of ASLâ€based timeâ€resolved MR angiography by acquisition of control and labeled images in the same shot (ACTRESS). Magnetic Resonance in Medicine, 2018, 79, 224-233.	1.9	10
69	Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1461-1480.	2.4	79
70	The Missing Link in the Pathophysiology of Vascular Cognitive Impairment: Design of the Heart-Brain Study. Cerebrovascular Diseases Extra, 2018, 7, 140-152.	0.5	44
71	Simultaneous acquisition of perfusion image and dynamic MR angiography using timeâ€encoded pseudo ontinuous ASL. Magnetic Resonance in Medicine, 2018, 79, 2676-2684.	1.9	10
72	Transit time mapping in the mouse brain using timeâ€encoded pCASL. NMR in Biomedicine, 2018, 31, e3855.	1.6	28

#	Article	IF	CITATIONS
73	Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1391-1417.	2.4	48
74	Impact of contrast agent injection duration on dynamic contrastâ€enhanced MRI quantification in prostate cancer. NMR in Biomedicine, 2018, 31, e3946.	1.6	4
75	MEG-guided analysis of 7T-MRI in patients with epilepsy. Seizure: the Journal of the British Epilepsy Association, 2018, 60, 29-38.	0.9	23
76	Simultaneous measurement of brain perfusion and labeling efficiency in a single pseudo ontinuous arterial spin labeling scan. Magnetic Resonance in Medicine, 2018, 79, 1922-1930.	1.9	8
77	Measuring the labeling efficiency of pseudocontinuous arterial spin labeling. Magnetic Resonance in Medicine, 2017, 77, 1841-1852.	1.9	32
78	Biomarkers, designs, and interpretations of restingâ€state fMRI in translational pharmacological research: A review of stateâ€ofâ€theâ€Art, challenges, and opportunities for studying brain chemistry. Human Brain Mapping, 2017, 38, 2276-2325.	1.9	57
79	MR Imaging of Individual Perfusion Reorganization Using Superselective Pseudocontinuous Arterial Spin-Labeling in Patients with Complex Extracranial Steno-Occlusive Disease. American Journal of Neuroradiology, 2017, 38, 703-711.	1.2	19
80	Subtle bloodâ€brain barrier leakage rate and spatial extent: Considerations for dynamic contrastâ€enhanced <scp>MRI</scp> . Medical Physics, 2017, 44, 4112-4125.	1.6	75
81	The cerebrovascular response to lower-body negative pressure vs. head-up tilt. Journal of Applied Physiology, 2017, 122, 877-883.	1.2	17
82	7 Tesla MRA for the differentiation between intracranial aneurysms and infundibula. Magnetic Resonance Imaging, 2017, 37, 16-20.	1.0	12
83	The Cognitive decline in Older Patients with End stage renal disease (COPE) study – rationale and design. Current Medical Research and Opinion, 2017, 33, 2057-2064.	0.9	17
84	Design of the ExCersionâ€VCI study: The effect of aerobic exercise on cerebral perfusion in patients with vascular cognitive impairment. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2017, 3, 157-165.	1.8	15
85	Cerebrovascular reactivity in the caudate nucleus, lentiform nucleus and thalamus in patients with carotid artery disease. Journal of Neuroradiology, 2017, 44, 143-150.	0.6	10
86	Targeting Cerebral Small Vessel Disease With MRI. Stroke, 2017, 48, 3175-3182.	1.0	52
87	Aging modifies the effect of cardiac output on middle cerebral artery blood flow velocity. Physiological Reports, 2017, 5, e13361.	0.7	22
88	Insight into the labeling mechanism of acceleration selective arterial spin labeling. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2017, 30, 165-174.	1.1	10
89	In vivo visualization of the locus coeruleus in humans: quantifying the test–retest reliability. Brain Structure and Function, 2017, 222, 4203-4217.	1.2	80
90	Decreased cerebral perfusion in Duchenne muscular dystrophy patients. Neuromuscular Disorders, 2017, 27, 29-37.	0.3	28

#	Article	IF	CITATIONS
91	Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2921-2927.	2.4	84
92	Automated eye blink detection and correction method for clinical MR eye imaging. Magnetic Resonance in Medicine, 2017, 78, 165-171.	1.9	9
93	A comparison of navigators, snapâ€shot field monitoring, and probeâ€based field model training for correcting B ₀ â€induced artifacts in â€weighted images at 7 T. Magnetic Resonance in Medicine, 2017, 78, 1373-1382.	, 1.9	8
94	Cerebral magnetic resonance imaging in quiescent Crohn's disease patients with fatigue. World Journal of Gastroenterology, 2017, 23, 1018.	1.4	12
95	Cardiovascular Response Patterns to Sympathetic Stimulation by Central Hypovolemia. Frontiers in Physiology, 2016, 7, 235.	1.3	6
96	Perfusion magnetic resonance imaging provides additional information as compared to anatomical imaging for decision-making in vestibular schwannoma. European Journal of Radiology Open, 2016, 3, 127-133.	0.7	7
97	Fast cerebral flow territory mapping using vessel encoded dynamic arterial spin labeling (VE-DASL). Magnetic Resonance in Medicine, 2016, 75, 2041-2049.	1.9	4
98	Detection superiority of 7ÂT MRI protocol in patients with epilepsy and suspected focal cortical dysplasia. Acta Neurologica Belgica, 2016, 116, 259-269.	0.5	27
99	Visual Assessment of Brain Perfusion MRI Scans in Dementia: A Pilot Study. Journal of Neuroimaging, 2016, 26, 324-330.	1.0	8
100	Measuring motion-induced B ₀ -fluctuations in the brain using field probes. Magnetic Resonance in Medicine, 2016, 75, 2020-2030.	1.9	15
101	Quantitative agreement between [¹⁵ 0]H ₂ 0 PET and model free QUASAR MRIâ€derived cerebral blood flow and arterial blood volume. NMR in Biomedicine, 2016, 29, 519-526.	1.6	10
102	Using High-Field Magnetic Resonance Imaging to Estimate Distensibility of the Middle Cerebral Artery. Neurodegenerative Diseases, 2016, 16, 407-410.	0.8	21
103	Cerebral blood flow, blood supply, and cognition in Type 2 Diabetes Mellitus. Scientific Reports, 2016, 6, 10.	1.6	178
104	Selective Arterial Spin Labeling. Topics in Magnetic Resonance Imaging, 2016, 25, 73-80.	0.7	7
105	Timeâ€efficient measurement of multiâ€phase arterial spin labeling MR signal in white matter. NMR in Biomedicine, 2016, 29, 1519-1525.	1.6	4
106	Cerebral blood flow in presymptomatic MAPT and GRN mutation carriers: A longitudinal arterial spin labeling study. NeuroImage: Clinical, 2016, 12, 460-465.	1.4	46
107	Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging. Neurobiology of Aging, 2016, 45, 190-196.	1.5	146
108	In Vivo T1 of Blood Measurements in Children with Sickle Cell Disease Improve Cerebral Blood Flow Quantification from Arterial Spin-Labeling MRI. American Journal of Neuroradiology, 2016, 37, 1727-1732.	1.2	37

#	Article	IF	CITATIONS
109	Blood-Brain Barrier Leakage in Patients with Early Alzheimer Disease. Radiology, 2016, 281, 527-535.	3.6	411
110	A novel approach to measure local cerebral haematocrit using MRI. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 768-780.	2.4	12
111	Unilateral fetal-type circle of Willis anatomy causes right–left asymmetry in cerebral blood flow with pseudo-continuous arterial spin labeling: A limitation of arterial spin labeling-based cerebral blood flow measurements?. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1570-1578.	2.4	15
112	Voxel-Wise Perfusion Assessment in Cerebral White Matter with PCASL at 3T; Is It Possible and How Long Does It Take?. PLoS ONE, 2015, 10, e0135596.	1.1	10
113	3D time-resolved vessel-selective angiography based on pseudo-continuous arterial spin labeling. Magnetic Resonance Imaging, 2015, 33, 840-846.	1.0	20
114	Ketamine interactions with biomarkers of stress: A randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. NeuroImage, 2015, 108, 396-409.	2.1	46
115	Recommended implementation of arterial spinâ€labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine, 2015, 73, spcone.	1.9	19
116	Neural correlates of planning performance in patients with schizophrenia — Relationship with apathy. Schizophrenia Research, 2015, 161, 367-375.	1.1	44
117	Recommended implementation of arterial spinâ€labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine, 2015, 73, 102-116.	1.9	1,663
118	Superselective pseudo-continuous arterial spin labeling angiography. European Journal of Radiology, 2015, 84, 1758-1767.	1.2	34
119	Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: Implications for multi-center studies. NeuroImage, 2015, 113, 143-152.	2.1	72
120	Comparison of Velocity- and Acceleration-Selective Arterial Spin Labeling with [¹⁵ 0]H ₂ 0 Positron Emission Tomography. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1296-1303.	2.4	24
121	Time-efficient determination of spin compartments by time-encoded pCASL T2-relaxation-under-spin-tagging and its application in hemodynamic characterization of the cerebral border zones. Neurolmage, 2015, 123, 72-79.	2.1	26
122	Reduction of arterial partial volume effects for improved absolute quantification of DSCâ€MRI perfusion estimates: Comparison between tail scaling and prebolus administration. Journal of Magnetic Resonance Imaging, 2015, 41, 903-908.	1.9	9
123	Quantitative Functional Arterial Spin Labeling (fASL) MRI – Sensitivity and Reproducibility of Regional CBF Changes Using Pseudo-Continuous ASL Product Sequences. PLoS ONE, 2015, 10, e0132929.	1.1	20
124	Feasibility of Using Pseudo-Continuous Arterial Spin Labeling Perfusion in a Geriatric Population at 1.5 Tesla. PLoS ONE, 2015, 10, e0144743.	1.1	11
125	Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study. PLoS ONE, 2014, 9, e98795.	1.1	62
126	Total Bolus Extraction Method Improves Arterial Image Quality in Dynamic CTAs Derived from Whole-Brain CTP Data. BioMed Research International, 2014, 2014, 1-6.	0.9	0

#	Article	IF	CITATIONS
127	Validation of planningâ€free vesselâ€encoded pseudoâ€continuous arterial spin labeling MR imaging as territorialâ€ASL strategy by comparison to superâ€selective pâ€CASL MRI. Magnetic Resonance in Medicine, 2014, 71, 2059-2070.	1.9	16
128	Vesselâ€encoded arterial spin labeling (VEâ€ASL) reveals elevated flow territory asymmetry in older adults with substandard verbal memory performance. Journal of Magnetic Resonance Imaging, 2014, 39, 377-386.	1.9	15
129	Spatial heterogeneity of the relation between restingâ€state connectivity and blood flow: An important consideration for pharmacological studies. Human Brain Mapping, 2014, 35, 929-942.	1.9	22
130	Timeâ€encoded pseudocontinuous arterial spin labeling: Basic properties and timing strategies for human applications. Magnetic Resonance in Medicine, 2014, 72, 1712-1722.	1.9	60
131	Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion. Magnetic Resonance in Medicine, 2014, 72, 996-1006.	1.9	26
132	Arterial spin labeling magnetic resonance perfusion imaging in cerebral ischemia. Current Opinion in Neurology, 2014, 27, 42-53.	1.8	29
133	Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: A head-to-head comparison with 150 H2O positron emission tomography. NeuroImage, 2014, 92, 182-192.	2.1	133
134	Absolute quantification of perfusion by dynamic susceptibility contrast MRI using Bookend and VASO steady-state CBV calibration: a comparison with pseudo-continuous ASL. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2014, 27, 487-499.	1.1	7
135	Cerebrovascular Reactivity in the Brain White Matter: Magnitude, Temporal Characteristics, and Age Effects. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 242-247.	2.4	105
136	Intravoxel incoherent motion (IVIM) imaging at different magnetic field strengths: What is feasible?. Magnetic Resonance Imaging, 2014, 32, 1247-1258.	1.0	23
137	Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. Journal of Applied Physiology, 2014, 117, 1084-1089.	1.2	246
138	G.P.127. Neuromuscular Disorders, 2014, 24, 838-839.	0.3	0
139	Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging. NeuroImage: Clinical, 2014, 5, 240-244.	1.4	76
140	Safety of Ultra-High Field MRI: What are the Specific Risks?. Current Radiology Reports, 2014, 2, 1.	0.4	41
141	Markers of endothelial dysfunction and cerebral blood flow in older adults. Neurobiology of Aging, 2014, 35, 373-377.	1.5	32
142	Effects of background suppression on the sensitivity of dual-echo arterial spin labeling MRI for BOLD and CBF signal changes. NeuroImage, 2014, 103, 316-322.	2.1	27
143	Gray matter contamination in arterial spin labeling white matter perfusion measurements in patients with dementia. NeuroImage: Clinical, 2014, 4, 139-144.	1.4	32
144	Accelerationâ€selective arterial spin labeling. Magnetic Resonance in Medicine, 2014, 71, 191-199.	1.9	27

#	Article	IF	CITATIONS
145	IC-P-181: BLOOD-BRAIN BARRIER LEAKAGE IN ALZHEIMER'S DISEASE: A DYNAMIC CONTRAST-ENHANCED MRI STUDY. , 2014, 10, P101-P101.		0
146	P2-226: BLOOD-BRAIN-BARRIER LEAKAGE IN ALZHEIMER'S DISEASE: A DYNAMIC CONTRAST-ENHANCED MRI STUDY. , 2014, 10, P557-P557.		0
147	Inter-Vendor Reproducibility of Pseudo-Continuous Arterial Spin Labeling at 3 Tesla. PLoS ONE, 2014, 9, e104108.	1.1	66
148	Feasibility of arterial spin labeling on a 1T open MRI scanner. Journal of Magnetic Resonance Imaging, 2013, 37, 958-964.	1.9	0
149	Subject tolerance of 7 T MRI examinations. Journal of Magnetic Resonance Imaging, 2013, 38, 722-725.	1.9	44
150	Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles. NeuroImage, 2013, 83, 505-512.	2.1	49
151	Effects of blood ΔR2* non-linearity on absolute perfusion quantification using DSC-MRI: Comparison with Xe-133 SPECT. Magnetic Resonance Imaging, 2013, 31, 651-655.	1.0	7
152	In vivo visualization of the PICA perfusion territory with super-selective pseudo-continuous arterial spin labeling MRI. NeuroImage, 2013, 83, 58-65.	2.1	20
153	Performance on Paced Auditory Serial Addition Test and cerebral blood flow in multiple sclerosis. Acta Neurologica Scandinavica, 2013, 128, n/a-n/a.	1.0	13
154	The impact of "physiological correction―on functional connectivity analysis of pharmacological resting state fMRI. Neurolmage, 2013, 65, 499-510.	2.1	62
155	In vivo blood <i>T</i> ₁ measurements at 1.5 T, 3 T, and 7 T. Magnetic Resonance in Medicine, 2013, 70, 1082-1086.	1.9	150
156	Acoustic noise reduction in pseudo-continuous arterial spin labeling (pCASL). Magnetic Resonance Materials in Physics, Biology, and Medicine, 2013, 27, 269-76.	1.1	0
157	Total cerebral blood flow and mortality in old age. Neurology, 2013, 81, 1922-1929.	1.5	22
158	Association of visit-to-visit variability in blood pressure with cognitive function in old age: prospective cohort study. BMJ, The, 2013, 347, f4600-f4600.	3.0	127
159	Relationships between hypercarbic reactivity, cerebral blood flow, and arterial circulation times in patients with moyamoya disease. Journal of Magnetic Resonance Imaging, 2013, 38, 1129-1139.	1.9	76
160	Superselective arterial spin labeling applied for flow territory mapping in various cerebrovascular diseases. Journal of Magnetic Resonance Imaging, 2013, 38, 496-503.	1.9	31
161	Dynamic susceptibility contrast MRI: acquisition and analysis techniques. , 2013, , 16-37.		3
162	Cerebral perfusion changes in migraineurs: a voxelwise comparison of interictal dynamic susceptibility contrast MRI measurements. Cephalalgia, 2012, 32, 279-288.	1.8	26

#	Article	IF	CITATIONS
163	Cerebral Perfusion Long Term after Therapeutic Occlusion of the Internal Carotid Artery in Patients Who Tolerated Angiographic Balloon Test Occlusion. American Journal of Neuroradiology, 2012, 33, 329-335.	1.2	26
164	Whole-Brain Arterial Spin Labeling Perfusion MRI in Patients With Acute Stroke. Stroke, 2012, 43, 1290-1294.	1.0	96
165	Forebrain-dominant deficit in cerebrovascular reactivity in Alzheimer's disease. Neurobiology of Aging, 2012, 33, 75-82.	1.5	98
166	Cerebrovascular hemodynamics in Alzheimer's disease and vascular dementia: A meta-analysis of transcranial Doppler studies. Ageing Research Reviews, 2012, 11, 271-277.	5.0	143
167	Elevated brain iron is independent from atrophy in Huntington's Disease. Neurolmage, 2012, 61, 558-564.	2.1	60
168	Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease. Journal of Magnetic Resonance Imaging, 2012, 35, 779-787.	1.9	58
169	Evaluation of signal formation in local arterial input function measurements of dynamic susceptibility contrast MRI. Magnetic Resonance in Medicine, 2012, 67, 1324-1331.	1.9	8
170	Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T. Magnetic Resonance in Medicine, 2012, 67, 1203-1209.	1.9	45
171	Selective multivessel labeling approach for perfusion territory imaging in pseudoâ€continuous arterial spin labeling. Magnetic Resonance in Medicine, 2012, 68, 214-219.	1.9	12
172	Retrospective image correction in the presence of nonlinear temporal magnetic field changes using multichannel navigator echoes. Magnetic Resonance in Medicine, 2012, 68, 1836-1845.	1.9	40
173	Feasibility of pseudocontinuous arterial spin labeling at 7ÂT with whole-brain coverage. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2012, 25, 83-93.	1.1	23
174	Pseudoâ€random arterial modulation (PRAM): A novel arterial spin labeling approach to measure flow and blood transit times. Journal of Magnetic Resonance Imaging, 2012, 35, 223-228.	1.9	4
175	White matter cerebral blood flow is inversely correlated with structural and functional connectivity in the human brain. NeuroImage, 2011, 56, 1145-1153.	2.1	35
176	321 oral IMPROVING THE ROBUSTNESS OF QUANTITATIVE DYNAMIC CONTRAST-ENHANCED MRI FOR TUMOR DELINEATION IN PROSTATE CANCER. Radiotherapy and Oncology, 2011, 99, S128-S129.	0.3	0
177	Evidence for involvement of the insula in the psychotropic effects of THC in humans: a double-blind, randomized pharmacological MRI study. International Journal of Neuropsychopharmacology, 2011, 14, 1377-1388.	1.0	47
178	Arterial Spin Labeling Perfusion MRI in Alzheimers Disease. Current Medical Imaging, 2011, 7, 62-72.	0.4	3
179	Pseudocontinuous Arterial Spin Labeling Reveals Dissociable Effects of Morphine and Alcohol on Regional Cerebral Blood Flow. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1321-1333.	2.4	39
180	Intra- and Multicenter Reproducibility of Pulsed, Continuous and Pseudo-Continuous Arterial Spin Labeling Methods for Measuring Cerebral Perfusion. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1706-1715.	2.4	127

#	Article	IF	CITATIONS
181	Distribution of cerebral blood flow in the caudate nucleus, lentiform nucleus and thalamus in patients with carotid artery stenosis. European Radiology, 2011, 21, 875-881.	2.3	17
182	New criterion to aid manual and automatic selection of the arterial input function in dynamic susceptibility contrast MRI. Magnetic Resonance in Medicine, 2011, 65, 448-456.	1.9	28
183	MRI of blood flow of the human retina. Magnetic Resonance in Medicine, 2011, 65, 1768-1775.	1.9	41
184	Phaseâ€based arterial input function measurements in the femoral arteries for quantification of dynamic contrastâ€enhanced (DCE) MRI and comparison with DCEâ€CT. Magnetic Resonance in Medicine, 2011, 66, 1267-1274.	1.9	34
185	Cerebrovascular reactivity within perfusion territories in patients with an internal carotid artery occlusion. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1011-1016.	0.9	47
186	Arterial spin labeling at ultraâ€high field: All that glitters is not gold. International Journal of Imaging Systems and Technology, 2010, 20, 62-70.	2.7	30
187	Perfusion MRI in neuroâ€psychiatric systemic lupus erthemathosus. Journal of Magnetic Resonance Imaging, 2010, 32, 283-288.	1.9	25
188	Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magnetic Resonance in Medicine, 2010, 63, 765-771.	1.9	216
189	Phaseâ€based arterial input function measurements for dynamic susceptibility contrast MRI. Magnetic Resonance in Medicine, 2010, 64, 358-368.	1.9	26
190	Superselective pseudocontinuous arterial spin labeling. Magnetic Resonance in Medicine, 2010, 64, 777-786.	1.9	65
191	Functional and Structural Diversification of the Anguimorpha Lizard Venom System. Molecular and Cellular Proteomics, 2010, 9, 2369-2390.	2.5	70
192	Measurement of cerebral perfusion using MRI. Imaging in Medicine, 2010, 2, 41-61.	0.0	3
193	Symptomatic Carotid Artery Stenosis: Impairment of Cerebral Autoregulation Measured at the Brain Tissue Level with Arterial Spin-labeling MR Imaging. Radiology, 2010, 256, 201-208.	3.6	71
194	Origin and reduction of motion and f0 artifacts in high resolution T2*-weighted magnetic resonance imaging: Application in Alzheimer's disease patients. NeuroImage, 2010, 51, 1082-1088.	2.1	76
195	High field clinical MRI neuroimaging. , 2010, , .		0
196	Nonlinear ΔR effects in perfusion quantification using bolusâ€ŧracking MRI. Magnetic Resonance in Medicine, 2009, 61, 486-492.	1.9	43
197	Can arterial spin labeling detect white matter perfusion signal?. Magnetic Resonance in Medicine, 2009, 62, 165-173.	1.9	183
198	Optimal Location for Arterial Input Function Measurements near the Middle Cerebral Artery in First-Pass Perfusion MRI. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 840-852.	2.4	55

#	ARTICLE	IF	CITATIONS
199	A central role for venom in predation by <i>Varanus komodoensis</i> (Komodo Dragon) and the extinct giant <i>Varanus</i> (<i>Megalania</i>) <i>priscus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8969-8974.	3.3	120
200	Correction for heart rate variability during 3D whole heart MR coronary angiography. Journal of Magnetic Resonance Imaging, 2008, 27, 1046-1053.	1.9	26
201	Probabilistic Brain Tissue Segmentation in Neonatal Magnetic Resonance Imaging. Pediatric Research, 2008, 63, 158-163.	1.1	62
202	Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E754-E758.	1.8	68
203	Symptomatic Carotid Artery Occlusion: Flow Territories of Major Brain-Feeding Arteries. Radiology, 2007, 242, 526-534.	3.6	72
204	Changes in Cerebral Perfusion after Revascularization of Symptomatic Carotid Artery Stenosis: CT Measurement. Radiology, 2007, 245, 541-548.	3.6	58
205	Altered flow territories after carotid stenting and carotid endarterectomy. Journal of Vascular Surgery, 2007, 45, 1155-1161.	0.6	45
206	Glucose Ingestion Fails to Inhibit Hypothalamic Neuronal Activity in Patients With Type 2 Diabetes. Diabetes, 2007, 56, 2547-2550.	0.3	71
207	Contrast agent concentration measurements affecting quantification of bolusâ€ŧracking perfusion MRI. Magnetic Resonance in Medicine, 2007, 58, 544-553.	1.9	67
208	Sensitivity comparison of multiple vs. single inversion time pulsed arterial spin labeling fMRI. Journal of Magnetic Resonance Imaging, 2007, 25, 215-221.	1.9	8
209	Reproducibility of wall shear stress assessment with the paraboloid method in the internal carotid artery with velocity encoded MRI in healthy young individuals. Journal of Magnetic Resonance Imaging, 2007, 26, 598-605.	1.9	22
210	In vivo flow territory mapping of major brain feeding arteries. NeuroImage, 2006, 29, 136-144.	2.1	100
211	Effect of satiety on brain activation during chocolate tasting in men and women. American Journal of Clinical Nutrition, 2006, 83, 1297-1305.	2.2	141
212	Non-invasive visualization of collateral blood flow patterns of the circle of Willis by dynamic MR angiography. Medical Image Analysis, 2006, 10, 59-70.	7.0	30
213	Sources of variation in multi-centre brain MTR histogram studies: body-coil transmission eliminates inter-centre differences. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2006, 19, 209-222.	1.1	38
214	Altered Flow Territories after Extracranial-Intracranial Bypass Surgery. Neurosurgery, 2005, 57, 486-494.	0.6	47
215	Partial volume effects on arterial input functions: Shape and amplitude distortions and their correction. Journal of Magnetic Resonance Imaging, 2005, 22, 704-709.	1.9	82
216	The effect of B1 field inhomogeneity and the nonselective inversion profile on the kinetics of FAIR-based perfusion MRI. Magnetic Resonance in Medicine, 2005, 53, 1355-1362.	1.9	9

#	Article	IF	CITATIONS
217	Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. American Journal of Clinical Nutrition, 2005, 82, 1011-1016.	2.2	149
218	Functional MRI of human hypothalamic responses following glucose ingestion. NeuroImage, 2005, 24, 363-368.	2.1	140
219	Association between supine cerebral perfusion and symptomatic orthostatic hypotension. NeuroImage, 2005, 27, 789-794.	2.1	19
220	Probabilistic segmentation of brain tissue in MR imaging. NeuroImage, 2005, 27, 795-804.	2.1	191
221	Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. NeuroImage, 2005, 28, 607-617.	2.1	222
222	Internal Carotid Artery Occlusion Assessed at Pulsed Arterial Spin-labeling Perfusion MR Imaging at Multiple Delay Times. Radiology, 2004, 233, 899-904.	3.6	100
223	Comparison of FAIR perfusion kinetics with DSC-MRI and functional histology in a model of transient ischemia. Magnetic Resonance in Medicine, 2004, 51, 312-320.	1.9	14
224	Automatic segmentation of different-sized white matter lesions by voxel probability estimation. Medical Image Analysis, 2004, 8, 205-215.	7.0	107
225	Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage, 2004, 21, 1037-1044.	2.1	306
226	Measuring the arterial input function with gradient echo sequences. Magnetic Resonance in Medicine, 2003, 49, 1067-1076.	1.9	166
227	Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magnetic Resonance in Medicine, 2003, 50, 614-622.	1.9	50
228	Effect of vascular crushing on FAIR perfusion kinetics, using a BIR-4 pulse in a magnetization prepared FLASH sequence. Magnetic Resonance in Medicine, 2003, 50, 608-613.	1.9	15
229	Cerebral Hemodynamics and Metabolism in Patients With Symptomatic Occlusion of the Internal Carotid Artery. Stroke, 2003, 34, 648-652.	1.0	18
230	Quantitative Cerebral Perfusion MRI and CO2 Reactivity Measurements in Patients with Symptomatic Internal Carotid Artery Occlusion. NeuroImage, 2002, 17, 469-478.	2.1	17
231	Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magnetic Resonance in Medicine, 2001, 45, 477-485.	1.9	112
232	Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magnetic Resonance in Medicine, 2000, 43, 820-827.	1.9	109
233	Repeated quantitative perfusion and contrast permeability measurement in the MRI examination of a CNS tumor. European Radiology, 2000, 10, 1447-1451.	2.3	8
234	Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. Journal of Magnetic Resonance Imaging, 1999, 10, 109-117.	1.9	169

IF

CITATIONS

Imaging carotid disease: MR and CT perfusion. , 0, , 358-371.