Jason X-J Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9737461/publications.pdf Version: 2024-02-01

IASON X-I YUAN

#	Article	IF	CITATIONS
1	Heterozygous <i>Tropomodulin 3</i> mice have improved lung vascularization after chronic hypoxia. Human Molecular Genetics, 2022, 31, 1130-1140.	2.9	0
2	Established pulmonary hypertension in rats was reversed by a combination of a HIFâ€2α antagonist and a p53 agonist. British Journal of Pharmacology, 2022, 179, 1065-1081.	5.4	13
3	Combined intermittent and sustained hypoxia is a novel and deleterious cardio-metabolic phenotype. Sleep, 2022, 45, .	1.1	14
4	Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L737-L760.	2.9	14
5	Excess neuropeptides in lung signal through endothelial cells to impair gas exchange. Developmental Cell, 2022, 57, 839-853.e6.	7.0	14
6	Cytokine profiling in pulmonary arterial hypertension: the role of redox homeostasis and sex. Translational Research, 2022, 247, 1-18.	5.0	6
7	NEDD9 provides mechanistic insight into the coagulopathy of COVIDâ€19. Pulmonary Circulation, 2022, 12, .	1.7	0
8	JAGGED-NOTCH3 signaling in vascular remodeling in pulmonary arterial hypertension. Science Translational Medicine, 2022, 14, eabl5471.	12.4	19
9	Flavored and Nicotine-Containing E-Cigarettes Induce Impaired Angiogenesis and Diabetic Wound Healing via Increased Endothelial Oxidative Stress and Reduced NO Bioavailability. Antioxidants, 2022, 11, 904.	5.1	10
10	Hypoxiaâ€induced pulmonary hypertension—Utilizing experiments of nature. British Journal of Pharmacology, 2021, 178, 121-131.	5.4	20
11	IL-18 mediates sickle cell cardiomyopathy and ventricular arrhythmias. Blood, 2021, 137, 1208-1218.	1.4	22
12	Activation of the mechanosensitive Ca2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics. Redox Biology, 2021, 38, 101785.	9.0	24
13	mTOR Signaling in Pulmonary Vascular Disease: Pathogenic Role and Therapeutic Target. International Journal of Molecular Sciences, 2021, 22, 2144.	4.1	29
14	SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circulation Research, 2021, 128, 1323-1326.	4.5	315
15	Upregulation of Piezo1 (Piezo Type Mechanosensitive Ion Channel Component 1) Enhances the Intracellular Free Calcium in Pulmonary Arterial Smooth Muscle Cells From Idiopathic Pulmonary Arterial Hypertension Patients. Hypertension, 2021, 77, 1974-1989.	2.7	42
16	Halofuginone, a promising drug for treatment of pulmonary hypertension. British Journal of Pharmacology, 2021, 178, 3373-3394.	5.4	15
17	Upregulation of Calcium Homeostasis Modulators in Contractile-To-Proliferative Phenotypical Transition of Pulmonary Arterial Smooth Muscle Cells. Frontiers in Physiology, 2021, 12, 714785.	2.8	1
18	Mouse model of experimental pulmonary hypertension: Lung angiogram and right heart catheterization. Pulmonary Circulation, 2021, 11, 1-17.	1.7	8

#	Article	IF	CITATIONS
19	Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. American Journal of Physiology - Cell Physiology, 2021, 321, C1010-C1027.	4.6	29
20	TRPC6, a therapeutic target for pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L1161-L1182.	2.9	22
21	Endothelial eNAMPT drives EndMT and preclinical PH: rescue by an eNAMPTâ€neutralizing mAb. Pulmonary Circulation, 2021, 11, 1-14.	1.7	13
22	HuR/Cx40 downregulation causes coronary microvascular dysfunction in type 2 diabetes. JCI Insight, 2021, 6, .	5.0	11
23	Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nature Communications, 2021, 12, 7104.	12.8	21
24	Overexpression of p53 due to excess protein O-GlcNAcylation is associated with coronary microvascular disease in type 2 diabetes. Cardiovascular Research, 2020, 116, 1186-1198.	3.8	28
25	MicroRNA-mediated downregulation of K ⁺ channels in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L10-L26.	2.9	25
26	Chloroquine differentially modulates coronary vasodilation in control and diabetic mice. British Journal of Pharmacology, 2020, 177, 314-327.	5.4	8
27	Endothelial plateletâ€derived growth factorâ€mediated activation of smooth muscle plateletâ€derived growth factor receptors in pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-15.	1.7	13
28	Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung. Pulmonary Circulation, 2020, 10, 1-18.	1.7	15
29	MDM2-Mediated Ubiquitination of Angiotensin-Converting Enzyme 2 Contributes to the Development of Pulmonary Arterial Hypertension. Circulation, 2020, 142, 1190-1204.	1.6	72
30	Altered Airway Microbiota Composition in Patients With Pulmonary Hypertension. Hypertension, 2020, 76, 1589-1599.	2.7	27
31	Direct Extracellular NAMPT Involvement in Pulmonary Hypertension and Vascular Remodeling. Transcriptional Regulation by SOX and HIF-2α. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 92-103.	2.9	39
32	Notch enhances Ca ²⁺ entry by activating calcium-sensing receptors and inhibiting voltage-gated K ⁺ channels. American Journal of Physiology - Cell Physiology, 2020, 318, C954-C968.	4.6	18
33	mTORC1 in Pulmonary Arterial Hypertension. At the Crossroads between Vasoconstriction and Vascular Remodeling?. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1177-1179.	5.6	12
34	Tetramethylpyrazine: A promising drug for the treatment of pulmonary hypertension. British Journal of Pharmacology, 2020, 177, 2743-2764.	5.4	36
35	Genetic Admixture and Survival in Diverse Populations with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1407-1415.	5.6	18
36	Metformin Use in Diabetes Prior to Hospitalization: Effects on Mortality in Covid-19. Endocrine Practice, 2020, 26, 1166-1172.	2.1	31

#	Article	IF	CITATIONS
37	Calcium Homeostasis Modulator (CALHM1/2) and Pulmonary Arterial Hypertension. FASEB Journal, 2020, 34, 1-1.	0.5	0
38	KCNK3 Channel: A New Player in the Field of Pulmonary Vascular Disease. Circulation Research, 2019, 125, 696-698.	4.5	3
39	Pathophysiology of stroke: what do cells of the neurovascular unit have to do with it?. American Journal of Physiology - Cell Physiology, 2019, 316, C1-C1.	4.6	4
40	Divergent changes of p53 in pulmonary arterial endothelial and smooth muscle cells involved in the development of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L216-L228.	2.9	41
41	MicroRNAâ€181b Regulates Ca 2+ Influx by Targeting TRPC6 in PASMC from Patients with Idiopathic Pulmonary Arterial Hypertension. FASEB Journal, 2019, 33, .	0.5	Ο
42	Endothelial HIF-2α Contributes to Severe Pulmonary Hypertension by Inducing Endothelial-to-Mesenchymal Transition. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, ajplung.00096.2.	2.9	121
43	STIM2 (Stromal Interaction Molecule 2)–Mediated Increase in Resting Cytosolic Free Ca ²⁺ Concentration Stimulates PASMC Proliferation in Pulmonary Arterial Hypertension. Hypertension, 2018, 71, 518-529.	2.7	45
44	Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover) Tj ETQq0 0 0 r	gBT_/Overl	ock 10 Tf 50 115
45	Pathogenic Role of mTORC1 and mTORC2 in Pulmonary Hypertension. JACC Basic To Translational Science, 2018, 3, 744-762.	4.1	47
46	Pathophysiology of stroke: the many and varied contributions of brain microvasculature. American Journal of Physiology - Cell Physiology, 2018, 315, C341-C342.	4.6	4
47	Nicotinamide Phosphoribosyltransferase Promotes Pulmonary Vascular Remodeling and Is a Therapeutic Target in Pulmonary Arterial Hypertension. Circulation, 2017, 135, 1532-1546.	1.6	57
48	Capsaicin-induced Ca ²⁺ signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L309-L325.	2.9	30
49	PVDOMICS. Circulation Research, 2017, 121, 1136-1139.	4.5	113
50	ATP promotes cell survival via regulation of cytosolic [Ca ²⁺] and Bcl-2/Bax ratio in lung cancer cells. American Journal of Physiology - Cell Physiology, 2016, 310, C99-C114.	4.6	68
51	Upregulated expression of STIM2, TRPC6, and Orai2 contributes to the transition of pulmonary arterial smooth muscle cells from a contractile to proliferative phenotype. American Journal of Physiology - Cell Physiology, 2015, 308, C581-C593.	4.6	91
52	Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L208-L220.	2.9	75
53	Notch Activation of Ca ²⁺ Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 355-367.	2.9	86
54	Activation of Notch signaling by short-term treatment with Jagged-1 enhances store-operated Ca ²⁺ entry in human pulmonary arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2014, 306, C871-C878.	4.6	34

#	Article	IF	CITATIONS
55	Optimization of Isolated Perfused/Ventilated Mouse Lung to Study Hypoxic Pulmonary Vasoconstriction. Pulmonary Circulation, 2013, 3, 396-405.	1.7	20
56	Thrombin-mediated activation of Akt signaling contributes to pulmonary vascular remodeling in pulmonary hypertension. Physiological Reports, 2013, 1, e00190.	1.7	24
57	PDCF enhances store-operated Ca ²⁺ entry by upregulating STIM1/Orai1 via activation of Akt/mTOR in human pulmonary arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2012, 302, C405-C411.	4.6	90
58	New mechanisms of pulmonary arterial hypertension: role of Ca ²⁺ signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1546-H1562.	3.2	164
59	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mrow><mml:msup><mml:mrow><mml:mtext>Ca</mml:mtext></mml:mrow><mml:mrow><mml: mathvariant="bold">2<mml:mo </mml:mo </mml: </mml:mrow></mml:msup></mml:mrow>	mn 2.0	21
60	STIM2 Contributes to Enhanced Storeâ€Operated Ca ²⁺ Entry in Pulmonary Artery Smooth Muscle Cells from Patients with Idiopathic Pulmonary Arterial Hypertension. Pulmonary Circulation, 2011, 1, 84-94.	1.7	78
61	Idiopathic pulmonary arterial hypertension. DMM Disease Models and Mechanisms, 2010, 3, 268-273.	2.4	57
62	Upregulation of Oct-4 isoforms in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L548-L557.	2.9	31
63	A Functional Single-Nucleotide Polymorphism in the <i>TRPC6</i> Gene Promoter Associated With Idiopathic Pulmonary Arterial Hypertension. Circulation, 2009, 119, 2313-2322.	1.6	173
64	Notch3 signaling promotes the development of pulmonary arterial hypertension. Nature Medicine, 2009, 15, 1289-1297.	30.7	303
65	Inflammation, Growth Factors, and Pulmonary Vascular Remodeling. Journal of the American College of Cardiology, 2009, 54, S10-S19.	2.8	605
66	Cellular and Molecular Basis of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S20-S31.	2.8	714
67	Functional Characterization of Ca 2+ and K + Channels in Human Embryonic Stem Cells. FASEB Journal, 2009, 23, 998.28.	0.5	Ο
68	Prednisolone inhibits PDGF-induced nuclear translocation of NF-κB in human pulmonary artery smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L648-L657.	2.9	28
69	Role of Connexin40 in Coronary Endothelial Cell Dysfunction in Type 1 Diabetic Mice. FASEB Journal, 2008, 22, 964.16.	0.5	0
70	Enhanced expression of pluripotency gene Octâ€4 in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. FASEB Journal, 2008, 22, 1209.15.	0.5	0
71	Electrophysiological characterization of cells isolated from endarterectomized tissue from patients with chronic thromboembolic pulmonary hypertension (CTEPH) FASEB Journal, 2008, 22, 1209.14.	0.5	0
72	Increased smooth muscle cell expression of caveolinâ€1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. FASEB Journal, 2007, 21, 2970-2979.	0.5	121

#	Article	IF	CITATIONS
73	TRP Channels, CCE, and the Pulmonary Vascular Smooth Muscle. Microcirculation, 2006, 13, 671-692.	1.8	51
74	Hypoxic pulmonary vasoconstriction: role of ion channels. Journal of Applied Physiology, 2005, 98, 415-420.	2.5	67
75	Identification of functional voltage-gated Na+ channels in cultured human pulmonary artery smooth muscle cells. Pflugers Archiv European Journal of Physiology, 2005, 451, 380-387.	2.8	32
76	DIVERGENT EFFECTS OF BMP-2 ON GENE EXPRESSION IN PULMONARY ARTERY SMOOTH MUSCLE CELLS FROM NORMAL SUBJECTS AND PATIENTS WITH IDIOPATHIC PULMONARY ARTERIAL HYPERTENSION. Experimental Lung Research, 2005, 31, 783-806.	1.2	28
77	Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13861-13866.	7.1	395
78	Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvascular Research, 2004, 68, 75-103.	2.5	263
79	PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. American Journal of Physiology - Cell Physiology, 2003, 284, C316-C330.	4.6	311
80	Signaling Molecules in Nonfamilial Pulmonary Hypertension. New England Journal of Medicine, 2003, 348, 500-509.	27.0	362
81	Inhibition of endogenous TRP1 decreases capacitative Ca ²⁺ entry and attenuates pulmonary artery smooth muscle cell proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L144-L155.	2.9	233
82	Upregulated <i>TRP</i> and enhanced capacitative Ca ²⁺ entry in human pulmonary artery myocytes during proliferation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H746-H755.	3.2	316
83	Capacitative Ca ²⁺ entry in agonist-induced pulmonary vasoconstriction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L870-L880.	2.9	134
84	c-Jun Decreases Voltage-Gated K + Channel Activity in Pulmonary Artery Smooth Muscle Cells. Circulation, 2001, 104, 1557-1563.	1.6	43
85	Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels. Respiratory Research, 2000, 1, 40-48.	3.6	98