Pierre Nabat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/973663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment. Atmospheric Chemistry and Physics, 2022, 22, 2999-3016.	4.9	15
2	Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations. Atmospheric Chemistry and Physics, 2022, 22, 4557-4579.	4.9	19
3	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	4.9	65
4	Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. Atmospheric Chemistry and Physics, 2021, 21, 5015-5061.	4.9	54
5	Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Chemistry and Physics, 2021, 21, 4231-4247.	4.9	22
6	The Climate Response to Emissions Reductions Due to COVIDâ€19: Initial Results From CovidMIP. Geophysical Research Letters, 2021, 48, e2020GL091883.	4.0	43
7	Future evolution of aerosols and implications for climate change in the Euro-Mediterranean region using the CNRM-ALADIN63 regional climate model. Atmospheric Chemistry and Physics, 2021, 21, 7639-7669.	4.9	5
8	Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models. Biogeosciences, 2021, 18, 3823-3860.	3.3	24
9	Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations. Atmospheric Chemistry and Physics, 2021, 21, 10039-10063.	4.9	45
10	Evaluation of natural aerosols in CRESCENDO Earth system models (ESMs): mineral dust. Atmospheric Chemistry and Physics, 2021, 21, 10295-10335.	4.9	20
11	Climate models generally underrepresent the warming by Central Africa biomass-burning aerosols over the Southeast Atlantic. Science Advances, 2021, 7, eabg9998.	10.3	25
12	Reappraisal of the Climate Impacts of Ozoneâ€Depleting Substances. Geophysical Research Letters, 2020, 47, e2020GL088295.	4.0	16
13	Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study. Atmospheric Chemistry and Physics, 2020, 20, 8381-8404.	4.9	18
14	The CNRM Global Atmosphere Model ARPEGEâ€Climat 6.3: Description and Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002075.	3.8	46
15	Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast AtlanticÂ(SEA) and its sensitivity to absorbing properties: a regional climate modeling study. Atmospheric Chemistry and Physics, 2020, 20, 13191-13216.	4.9	49
16	Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 14547-14579.	4.9	105
17	Bias in CMIP6 models as compared to observed regional dimming and brightening. Atmospheric Chemistry and Physics, 2020, 20, 16023-16040.	4.9	25
18	Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region. Atmospheric Chemistry and Physics, 2020, 20, 8315-8349.	4.9	54

PIERRE NABAT

#	Article	IF	CITATIONS
19	Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 9591-9618.	4.9	149
20	Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.	4.9	30
21	Introduction: Process studies at the air–sea interface after atmospheric deposition in the Mediterranean Sea – objectives and strategy of the PEACETIME oceanographic campaign (May–June) Tj ETQ	q13130.784	43 24 rgBT /C
22	Evaluation of CNRM Earth System Model, CNRMâ€ESM2â€1: Role of Earth System Processes in Presentâ€Day and Future Climate. Journal of Advances in Modeling Earth Systems, 2019, 11, 4182-4227.	3.8	309
23	Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments. Atmospheric Chemistry and Physics, 2019, 19, 4963-4990.	4.9	25
24	The Aerosols, Radiation and Clouds in Southern Africa Field Campaign in Namibia: Overview, Illustrative Observations, and Way Forward. Bulletin of the American Meteorological Society, 2019, 100, 1277-1298.	3.3	59
25	Modeling the impacts of atmospheric deposition of nitrogen and desert dust-derived phosphorus on nutrients and biological budgets of the Mediterranean Sea. Progress in Oceanography, 2018, 163, 21-39.	3.2	46