Jinha Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9734604/publications.pdf Version: 2024-02-01

Ιινιμα Υιι

#	Article	IF	CITATIONS
1	Interaction of A3 adenosine receptor ligands with the human multidrug transporter ABCG2. European Journal of Medicinal Chemistry, 2022, 231, 114103.	5.5	3
2	P2Y ₁₄ receptor inhibition reverses mechanical sensitivity in a mouse model of chronic neuropathic pain. FASEB Journal, 2022, 36, .	0.5	0
3	Design, Synthesis and Biological Evaluation of 1,3,5-Triazine Derivatives Targeting hA1 and hA3 Adenosine Receptor. Molecules, 2022, 27, 4016.	3.8	2
4	A Novel cytarabine analog evokes synthetic lethality by targeting MK2 in p53-deficient cancer cells. Cancer Letters, 2021, 497, 54-65.	7.2	11
5	Design and Synthesis of 2,6-Disubstituted-4′-Selenoadenosine-5′-N,N-Dimethyluronamide Derivatives as Human A3 Adenosine Receptor Antagonists. Pharmaceuticals, 2021, 14, 363.	3.8	3
6	Anticancer Effects of Propionic Acid Inducing Cell Death in Cervical Cancer Cells. Molecules, 2021, 26, 4951.	3.8	20
7	Selenium bioisosteric replacement of adenosine derivatives promoting adiponectin secretion increases the binding affinity to peroxisome proliferator-activated receptor I´. Bioorganic and Medicinal Chemistry, 2020, 28, 115226.	3.0	5
8	Exploration of Alternative Scaffolds for P2Y ₁₄ Receptor Antagonists Containing a Biaryl Core. Journal of Medicinal Chemistry, 2020, 63, 9563-9589.	6.4	20
9	Discovery and Structure–Activity Relationships of Novel Template, Truncated 1′-Homologated Adenosine Derivatives as Pure Dual PPARγ/δModulators. Journal of Medicinal Chemistry, 2020, 63, 16012-16027.	6.4	15
10	P2Y ₁₄ Receptor Antagonists Reverse Chronic Neuropathic Pain in a Mouse Model. ACS Medicinal Chemistry Letters, 2020, 11, 1281-1286.	2.8	22
11	<scp>UBC12</scp> â€mediated <scp>SREBP</scp> â€1 neddylation worsens metastatic tumor prognosis. International Journal of Cancer, 2020, 147, 2550-2563.	5.1	22
12	Asymmetric Synthesis of Fluoroâ€MLN4924 as a Selective NEDD8â€Activating Enzyme (NAE) Inhibitor. Asian Journal of Organic Chemistry, 2019, 8, 1641-1647.	2.7	2
13	Asymmetric Synthesis of 2′- <i>C</i> -Methyl-4′-selenonucleosides as Anti-Hepatitis C Virus Agents. Journal of Organic Chemistry, 2019, 84, 14414-14426.	3.2	11
14	Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene, 2019, 38, 5792-5804.	5.9	55
15	Targeting neddylation inhibits intravascular survival and extravasation of cancer cells to prevent lung-cancer metastasis. Cell Biology and Toxicology, 2019, 35, 233-245.	5.3	18
16	An alternative and efficient synthesis of MLN4924, a selective NEDD8 inhibitor. Organic Chemistry Frontiers, 2019, 6, 2480-2487.	4.5	1
17	Synthesis and anti-HIV activity of l-2′,3′-Dideoxy-4′-selenonucleosides (l-4′-Se-ddNs). Archives of Pharmacal Research, 2019, 42, 780-789.	6.3	3
18	Neddylation Inactivation Facilitates FOXO3a Nuclear Export to Suppress Estrogen Receptor Transcription and Improve Fulvestrant Sensitivity. Clinical Cancer Research, 2019, 25, 3658-3672.	7.0	31

Jinha Yu

#	Article	IF	CITATIONS
19	The Nedd8â€activating enzyme inhibitor <scp>MLN</scp> 4924 (<scp>TAK</scp> â€924/Pevonedistat) induces apoptosis via câ€Mycâ€Noxa axis in head and neck squamous cell carcinoma. Cell Proliferation, 2019, 52, e12536.	5.3	20
20	Correlation study between A3 adenosine receptor binding affinity and anti-renal interstitial fibrosis activity of truncated adenosine derivatives. Archives of Pharmacal Research, 2019, 42, 773-779.	6.3	3
21	Structure activity relationship of 2-arylalkynyl-adenine derivatives as human A ₃ adenosine receptor antagonists. MedChemComm, 2018, 9, 1920-1932.	3.4	6
22	LJ-1888, a selective antagonist for the A3 adenosine receptor, ameliorates the development of atherosclerosis and hypercholesterolemia in apolipoprotein E knock-out mice. BMB Reports, 2018, 51, 520-525.	2.4	6
23	A novel selenonucleoside suppresses tumor growth by targeting Skp2 degradation in paclitaxel-resistant prostate cancer. Biochemical Pharmacology, 2018, 158, 84-94.	4.4	37
24	Structure-Guided Modification of Heterocyclic Antagonists of the P2Y ₁₄ Receptor. Journal of Medicinal Chemistry, 2018, 61, 4860-4882.	6.4	32
25	Medicinal Chemistry of the A3 Adenosine Receptor. , 2018, , 169-198.		7
26	A1 Adenosine Receptor Agonists, Antagonists, and Allosteric Modulators. , 2018, , 59-89.		14
27	Design, synthesis and anticancer activity of fluorocyclopentenyl-purines and – pyrimidines. European Journal of Medicinal Chemistry, 2018, 155, 406-417.	5.5	34
28	NEDD8-activating enzyme inhibitor, MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis through up-regulation of ATF-4. Biochemical and Biophysical Research Communications, 2017, 488, 1-5.	2.1	16
29	<i>N</i> ⁶ -Substituted 5′- <i>N</i> -Methylcarbamoyl-4′-selenoadenosines as Potent and Selective A ₃ Adenosine Receptor Agonists with Unusual Sugar Puckering and Nucleobase Orientation. Journal of Medicinal Chemistry, 2017, 60, 3422-3437.	6.4	22
30	Determination and validation of LJ-2698, a potent human A3 adenosine receptor antagonist, in rat plasma by liquid chromatography-tandem massÂspectrometry and its application in pharmacokinetic study. Archives of Pharmacal Research, 2017, 40, 952-961.	6.3	0
31	Polypharmacology of <i>N</i> ⁶ -(3-lodobenzyl)adenosine-5â€2- <i>N</i> -methyluronamide (IB-MECA) and Related A ₃ Adenosine Receptor Ligands: Peroxisome Proliferator Activated Receptor (PPAR) γ Partial Agonist and PPARδAntagonist Activity Suggests Their Antidiabetic Potential. Iournal of Medicinal Chemistry, 2017, 60, 7459-7475.	6.4	29
32	Targeting neddylation pathway with MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis in renal cell carcinoma. Biochemical and Biophysical Research Communications, 2017, 490, 1183-1188.	2.1	11
33	Bitopic fluorescent antagonists of the A _{2A} adenosine receptor based on pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine functionalized congeners. MedChemComm, 2017, 8, 1659-1667.	3.4	15
34	Structure-Activity Relationships of Acyclic Selenopurine Nucleosides as Antiviral Agents. Molecules, 2017, 22, 1167.	3.8	6
35	Synthesis of Acyclic Selenonucleoside Phosphonates as Potential Antiviral Agents. Asian Journal of Organic Chemistry, 2016, 5, 183-186.	2.7	8

36 Synthesis and Antiâ€HIV Activity of 5′â€Homoâ€2′,3′â€dideoxyâ€2′,3′â€didehydroâ€4′â€selenonucleosides (5′â€ Asian Journal of Organic Chemistry, 2016, 5, 735-741.

Jinha Yu

#	Article	IF	CITATIONS
37	Design, synthesis, and anticancer activity of C8-substituted-4′-thionucleosides as potential HSP90 inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3418-3428.	3.0	13
38	Neddylation Inhibition Activates the Extrinsic Apoptosis Pathway through ATF4–CHOP–DR5 Axis in Human Esophageal Cancer Cells. Clinical Cancer Research, 2016, 22, 4145-4157.	7.0	96
39	PPARÎ ³ neddylation essential for adipogenesis is a potential target for treating obesity. Cell Death and Differentiation, 2016, 23, 1296-1311.	11.2	61
40	Radiosensitization by the investigational NEDD8-activating enzyme inhibitor MLN4924 (pevonedistat) in hormone-resistant prostate cancer cells. Oncotarget, 2016, 7, 38380-38391.	1.8	25
41	Selenoacyclovir and Selenoganciclovir: Discovery of a New Template for Antiviral Agents. Journal of Medicinal Chemistry, 2015, 58, 8734-8738.	6.4	48
42	4′â€Selenonucleosides as Nextâ€Generation Nucleosides. European Journal of Organic Chemistry, 2015, 2015, 6115-6124.	2.4	17
43	Design, synthesis and cellular metabolism study of 4′-selenonucleosides. Future Medicinal Chemistry, 2015, 7, 1643-1655.	2.3	9
44	Stereoselective Synthesis of <scp>d</scp> -5-Homo-4-selenoribose as a Versatile Intermediate for 4′-Selenonucleosides. Organic Letters, 2015, 17, 4636-4639.	4.6	11
45	Synthesis and biological evaluation of 2′-substituted-4′-selenoribofuranosyl pyrimidines as antitumor agents. Archives of Pharmacal Research, 2015, 38, 966-972.	6.3	8
46	A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells. Biomolecules and Therapeutics, 2015, 23, 218-224.	2.4	16
47	Suppression of tumor angiogenesis by targeting the protein neddylation pathway. Cell Death and Disease, 2014, 5, e1059-e1059.	6.3	64
48	Stereoselective Synthesis of 4′-Selenonucleosides via Seleno-Michael Reaction as Potent Antiviral Agents. Organic Letters, 2014, 16, 5796-5799.	4.6	32
49	Structure–activity relationships of 2′-modified-4′-selenoarabinofuranosyl-pyrimidines as anticancer agents. European Journal of Medicinal Chemistry, 2014, 83, 208-225.	5.5	23
50	Overactivated Neddylation Pathway as a Therapeutic Target in Lung Cancer. Journal of the National Cancer Institute, 2014, 106, dju083.	6.3	144
51	Neddylation pathway regulates the proliferation and survival of macrophages. Biochemical and Biophysical Research Communications, 2013, 432, 494-498.	2.1	38
52	New RNA Purine Building Blocks, 4′‣elenopurine Nucleosides: First Synthesis and Unusual Mixture of Sugar Puckerings. Chemistry - A European Journal, 2013, 19, 5528-5532.	3.3	34