Tao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/97336/publications.pdf Version: 2024-02-01

Troluu

#	Article	IF	CITATIONS
1	Highly Active Hollow Porous Carbon Spheres@Graphite Felt Composite Electrode for High Power Density Vanadium Flow Batteries. Advanced Functional Materials, 2022, 32, .	14.9	29
2	Mitigating Capacity Decay by Adding Carbohydrate in the Negative Electrolyte of Vanadium Redox Flow Battery. Energies, 2022, 15, 2454.	3.1	4
3	Highly Active Ag Nanoparticle Electrocatalysts toward V ²⁺ /V ³⁺ Redox Reaction. ACS Applied Energy Materials, 2021, 4, 3913-3920.	5.1	13
4	Inspired by "quenching-cracking―strategy: Structure-based design of sulfur-doped graphite felts for ultrahigh-rate vanadium redox flow batteries. Energy Storage Materials, 2021, 39, 166-175.	18.0	27
5	Layer-by-layer growth of ZIF-8 on electrospun carbon nanofiber membranes for high-performance supercapacistor electrode. Journal of Energy Chemistry, 2020, 47, 221-224.	12.9	14
6	Cost, performance prediction and optimization of a vanadium flow battery by machine-learning. Energy and Environmental Science, 2020, 13, 4353-4361.	30.8	59
7	Holey three-dimensional wood-based electrode for vanadium flow batteries. Energy Storage Materials, 2020, 27, 327-332.	18.0	49
8	Progress on the electrode materials towards vanadium flow batteries (VFBs) with improved power density. Journal of Energy Chemistry, 2018, 27, 1292-1303.	12.9	69
9	Activated Carbon Fiber Paper Based Electrodes with High Electrocatalytic Activity for Vanadium Flow Batteries with Improved Power Density. ACS Applied Materials & Interfaces, 2017, 9, 4626-4633.	8.0	122
10	Ultrathin free-standing electrospun carbon nanofibers web as the electrode of the vanadium flow batteries. Journal of Energy Chemistry, 2017, 26, 730-737.	12.9	29
11	Design and synthesis of a free-standing carbon nano-fibrous web electrode with ultra large pores for high-performance vanadium flow batteries. RSC Advances, 2017, 7, 45932-45937.	3.6	40
12	The catalytic effect of bismuth for VO 2 + /VO 2+ and V 3+ /V 2+ redox couples in vanadium flow batteries. Journal of Energy Chemistry, 2017, 26, 1-7.	12.9	48
13	Investigation on the effect of catalyst on the electrochemical performance of carbon felt and graphite felt for vanadium flow batteries. Journal of Power Sources, 2015, 286, 73-81.	7.8	92
14	Nitrogen-containing mesoporous carbon cathode for lithium-oxygen batteries: The influence of Nitrogen on oxygen reduction reaction. Electrochimica Acta, 2014, 150, 205-210.	5.2	19
15	Investigation on the performance evaluation method of flow batteries. Journal of Power Sources, 2014, 266, 145-149.	7.8	51
16	Nitrogen enriched mesoporous carbon as a high capacity cathode in lithium–oxygen batteries. Nanoscale, 2013, 5, 8484.	5.6	50
17	Cell architecture upswing based on catalyst coated membrane (CCM) forÂvanadium flow battery. Journal of Power Sources, 2013, 237, 19-25.	7.8	21
18	Vanadium Flow Battery for Energy Storage: Prospects and Challenges. Journal of Physical Chemistry Letters, 2013, 4, 1281-1294.	4.6	443

#	Article	IF	CITATIONS
19	Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery. Journal of Power Sources, 2012, 218, 455-461.	7.8	207