Christine Spitzweg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9733411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Medullary thyroid cancer with ectopic Cushing's syndrome: A multicentre case series. Clinical Endocrinology, 2022, 96, 847-856.	2.4	7
2	The sodium iodide symporter (NIS) as theranostic gene: its emerging role in new imaging modalities and non-viral gene therapy. EJNMMI Research, 2022, 12, 25.	2.5	10
3	Preoperative Imaging with [18F]-Fluorocholine PET/CT in Primary Hyperparathyroidism. Journal of Clinical Medicine, 2022, 11, 2944.	2.4	1
4	Real-World Efficacy and Safety of Cabozantinib and Vandetanib in Advanced Medullary Thyroid Cancer. Thyroid, 2021, 31, 459-469.	4.5	37
5	Clinical impact of follicular oncocytic (Hürthle cell) carcinoma in comparison with corresponding classical follicular thyroid carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 449-460.	6.4	14
6	Radiation to the Primary Tumor in Metastatic Anaplastic Thyroid Cancer. In Vivo, 2021, 35, 461-465.	1.3	4
7	18F-FDG-PET/CT in Patients with Advanced, Radioiodine Refractory Thyroid Cancer Treated with Lenvatinib. Cancers, 2021, 13, 317.	3.7	15
8	The diagnostic challenge of coexistent sarcoidosis and thyroid cancer – a retrospective study. BMC Cancer, 2021, 21, 139.	2.6	7
9	Regional Hyperthermia Enhances Mesenchymal Stem Cell Recruitment to Tumor Stroma: Implications for Mesenchymal Stem Cell-Based Tumor Therapy. Molecular Therapy, 2021, 29, 788-803.	8.2	16
10	An unusual case of struma ovarii. Endocrinology, Diabetes and Metabolism Case Reports, 2021, 2021, .	0.5	5
11	Taking Advantage of the TGFB1 Biology in Differentiated Thyroid Cancer to Stimulate Sodium Iodide Symporter (NIS)-Mediated Iodide Uptake in Engineered Mesenchymal Stem Cells. Journal of the Endocrine Society, 2021, 5, A1033-A1033.	0.2	0
12	FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale. Frontiers in Endocrinology, 2021, 12, 712107.	3.5	16
13	Real world efficacy and safety of multi-tyrosine kinase inhibitors in radioiodine refractory thyroid cancer. Thyroid, 2021, 31, 1531-1541.	4.5	11
14	Course of Disease and Clinical Management of Patients with Poorly Differentiated Thyroid Carcinoma. Cancers, 2021, 13, 5309.	3.7	2
15	Selective sodium iodide symporter (NIS) gene therapy of glioblastoma mediated by EGFR-targeted lipopolyplexes. Molecular Therapy - Oncolytics, 2021, 23, 432-446.	4.4	11
16	Thyroid Hormone Effects on Mesenchymal Stem Cell Biology in the Tumour Microenvironment. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 462-468.	1.2	7
17	Effects of the Minimal Extrathyroidal Extension on Early Response Rates after (Adjuvant) Initial Radioactive Iodine Therapy in PTC Patients. Cancers, 2020, 12, 3357.	3.7	8
18	Hypofractionated Radiotherapy for Anaplastic Thyroid Cancer: Systematic Review and Pooled Analysis. Cancers, 2020, 12, 2506.	3.7	11

CHRISTINE SPITZWEG

#	Article	IF	CITATIONS
19	Clinical Outcome and Toxicity in the Treatment of Anaplastic Thyroid Cancer in Elderly Patients. Journal of Clinical Medicine, 2020, 9, 3231.	2.4	2
20	Bone Metastases in Medullary Thyroid Carcinoma: High Morbidity and Poor Prognosis Associated With Osteolytic Morphology. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2239-e2246.	3.6	10
21	Effective control of tumor growth through spatial and temporal control of theranostic sodium iodide symporter (<i>NIS</i>) gene expression using a heat-inducible gene promoter in engineered mesenchymal stem cells. Theranostics, 2020, 10, 4490-4506.	10.0	19
22	Integrin αvβ3-dependent thyroid hormone effects on tumour proliferation and vascularisation. Endocrine-Related Cancer, 2020, 27, 685-697.	3.1	7
23	SUN-120 Regional Hyperthermia Enhances Selective Mesenchymal Stem Cell Migration Towards the Tumor Stroma. Journal of the Endocrine Society, 2020, 4, .	0.2	0
24	TGFB1-driven mesenchymal stem cell-mediated NIS gene transfer. Endocrine-Related Cancer, 2019, 26, 89-101.	3.1	16
25	Long-term outcome of rare oncocytic papillary (Hürthle cell) thyroid carcinoma following (adjuvant) initial radioiodine therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2526-2535.	6.4	14
26	Integrin αvβ3-Mediated Effects of Thyroid Hormones on Mesenchymal Stem Cells in Tumor Angiogenesis. Thyroid, 2019, 29, 1843-1857.	4.5	23
27	Dual-targeted NIS polyplexes—a theranostic strategy toward tumors with heterogeneous receptor expression. Gene Therapy, 2019, 26, 93-108.	4.5	22
28	Radiation-Induced Amplification of TGFB1-Induced Mesenchymal Stem Cell–Mediated Sodium Iodide Symporter (<i>NIS</i>) Gene 1311 Therapy. Clinical Cancer Research, 2019, 25, 5997-6008.	7.0	18
29	The added diagnostic value of complementary gadoxetic acid-enhanced MRI to 18F-DOPA-PET/CT for liver staging in medullary thyroid carcinoma. Cancer Imaging, 2019, 19, 73.	2.8	10
30	A Novel Approach for Image-Guided 1311 Therapy of Pancreatic Ductal Adenocarcinoma Using Mesenchymal Stem Cell-Mediated NIS Gene Delivery. Molecular Cancer Research, 2019, 17, 310-320.	3.4	22
31	Tetrac as an anti-angiogenic agent in cancer. Endocrine-Related Cancer, 2019, 26, R287-R304.	3.1	12
32	Supportive therapy in gastroenteropancreatic neuroendocrine tumors: Often forgotten but important. Reviews in Endocrine and Metabolic Disorders, 2018, 19, 145-158.	5.7	23
33	Advanced neuroendocrine tumours of the small intestine and pancreas: clinical developments, controversies, and future strategies. Lancet Diabetes and Endocrinology,the, 2018, 6, 404-415.	11.4	56
34	EGFR Targeting and Shielding of pDNA Lipopolyplexes via Bivalent Attachment of a Sequenceâ€Đefined PEG Agent. Macromolecular Bioscience, 2018, 18, 1700203.	4.1	18
35	Identification and characterization of myocardial metastases in neuroendocrine tumor patients using 68Ga-DOTATATE PET-CT. Cancer Imaging, 2018, 18, 34.	2.8	15
36	External Beam Radiation Therapy Enhances Mesenchymal Stem Cell–Mediated Sodium–Iodide Symporter Gene Delivery. Human Gene Therapy, 2018, 29, 1287-1300.	2.7	21

CHRISTINE SPITZWEG

#	Article	IF	CITATIONS
37	Systemic tumorâ€ŧargeted sodium iodide symporter (NIS) gene therapy of hepatocellular carcinoma mediated by B6 peptide polyplexes. Journal of Gene Medicine, 2017, 19, e2957.	2.8	20
38	Increased trace amine-associated receptor 1 (TAAR1) expression is associated with a positive survival rate in patients with breast cancer. Journal of Cancer Research and Clinical Oncology, 2017, 143, 1637-1647.	2.5	29
39	Reintroducing the Sodium–lodide Symporter to Anaplastic Thyroid Carcinoma. Thyroid, 2017, 27, 1534-1543.	4.5	21
40	Leveraging the immune system to treat advanced thyroid cancers. Lancet Diabetes and Endocrinology,the, 2017, 5, 469-481.	11.4	58
41	Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Shielding of pDNA Nanoparticles. Polymers, 2017, 9, 142.	4.5	17
42	Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene. Oncotarget, 2017, 8, 33393-33404.	1.8	33
43	EGFR-targeted nonviral NIS gene transfer for bioimaging and therapy of disseminated colon cancer metastases. Oncotarget, 2017, 8, 92195-92208.	1.8	18
44	Hypoxia-targeted 1311 therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated sodium iodide symporter gene delivery. Oncotarget, 2016, 7, 54795-54810.	1.8	31
45	Sequence-defined cMET/HGFR-targeted Polymers as Gene Delivery Vehicles for the Theranostic Sodium Iodide Symporter (NIS) Gene. Molecular Therapy, 2016, 24, 1395-1404.	8.2	30
46	Clinical presentation, treatment and outcome of anaplastic thyroid carcinoma: results of a multicenter study in Germany. European Journal of Endocrinology, 2016, 175, 521-529.	3.7	90
47	Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opinion on Biological Therapy, 2016, 16, 1079-1092.	3.1	36
48	124I-PET Assessment of Human Sodium lodide Symporter Reporter Gene Activity for Highly Sensitive In Vivo Monitoring of Teratoma Formation in Mice. Molecular Imaging and Biology, 2015, 17, 874-883.	2.6	12
49	Mesenchymal Stem Cell–Mediated, Tumor Stroma–Targeted Radioiodine Therapy of Metastatic Colon Cancer Using the Sodium Iodide Symporter as Theranostic Gene. Journal of Nuclear Medicine, 2015, 56, 600-606.	5.0	66
50	Thyroid hormones and tetrac: new regulators of tumour stroma formation via integrin αvβ3. Endocrine-Related Cancer, 2015, 22, 941-952.	3.1	41
51	Stromal Targeting of Sodium Iodide Symporter Using Mesenchymal Stem Cells Allows Enhanced Imaging and Therapy of Hepatocellular Carcinoma. Human Gene Therapy, 2013, 24, 306-316.	2.7	44
52	Image-Guided Tumor-Selective Radioiodine Therapy of Liver Cancer After Systemic Nonviral Delivery of the Sodium Iodide Symporter Gene. Human Gene Therapy, 2011, 22, 1563-1574.	2.7	44
53	Sodium Iodide Symporter (NIS)-Mediated Radionuclide (¹³¹ I, ¹⁸⁸ Re) Therapy of Liver Cancer After Transcriptionally Targeted Intratumoral <i>in Vivo</i> NIS Gene Delivery. Human Gene Therapy, 2011, 22, 1403-1412.	2.7	44
54	Epidermal Growth Factor Receptor-targeted 131I-therapy of Liver Cancer Following Systemic Delivery of the Sodium Iodide Symporter Gene. Molecular Therapy, 2011, 19, 676-685.	8.2	99

CHRISTINE SPITZWEG

#	Article	IF	CITATIONS
55	Image-guided, Tumor Stroma-targeted 1311 Therapy of Hepatocellular Cancer After Systemic Mesenchymal Stem Cell-mediated NIS Gene Delivery. Molecular Therapy, 2011, 19, 1704-1713.	8.2	78
56	Genetics and phenomics of hypothyroidism and goiter due to NIS mutations. Molecular and Cellular Endocrinology, 2010, 322, 56-63.	3.2	69
57	Targeted Radioiodine Therapy of Neuroblastoma Tumors following Systemic Nonviral Delivery of the Sodium Iodide Symporter Gene. Clinical Cancer Research, 2009, 15, 6079-6086.	7.0	65
58	Functional sodium iodide symporter expression in breast cancer xenografts inÂvivo after systemic treatment with retinoic acid and dexamethasone. Breast Cancer Research and Treatment, 2008, 109, 263-272.	2.5	30
59	Application of 188Rhenium as an Alternative Radionuclide for Treatment of Prostate Cancer after Tumor-Specific Sodium Iodide Symporter Gene Expression. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 4451-4458.	3.6	56
60	Image-Guided Radioiodide Therapy of Medullary Thyroid Cancer After Carcinoembryonic Antigen Promoter-Targeted Sodium Iodide Symporter Gene Expression. Human Gene Therapy, 2007, 18, 916-924.	2.7	64
61	Gene Therapy for Thyroid Cancer: Current Status and Future Prospects. Thyroid, 2004, 14, 424-434.	4.5	52
62	The sodium iodide symporter: its pathophysiological and therapeutic implications. Clinical Endocrinology, 2002, 57, 559-574.	2.4	160
63	Sodium Iodide Symporter (NIS) and Thyroid. Hormones, 2002, 1, 22-34.	1.9	27
64	The Sodium Iodide Symporter and Its Potential Role in Cancer Therapy. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3327-3335.	3.6	117