
Jing-Huai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9731976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructures and mechanical properties of as-cast Mg-Sm-Zn-Zr alloys with varying Gd contents. Journal of Magnesium and Alloys, 2022, 10, 1220-1234.	11.9	25
2	Significantly enhanced grain boundary Zn and Ca co-segregation of dilute Mg alloy via trace Sm addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142259.	5.6	28
3	Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation. Scripta Materialia, 2022, 209, 114414.	5.2	91
4	Effects of cryogenic treatment on microstructure and mechanical properties of AZ31 magnesium alloy rolled at different paths. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142475.	5.6	50
5	Effect of Li content on electromagnetic shielding effectiveness in binary Mg–Li alloys: a combined experimental and first-principles study. Journal of Materials Science: Materials in Electronics, 2022, 33, 3891-3900.	2.2	3
6	New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase. Corrosion Science, 2022, 198, 110163.	6.6	91
7	Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg-9Li-3Al alloy. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1453-1463.	4.9	41
8	Grain Refinement Behavior of Accumulative Roll Bonding-Processed Mg-14Li-3Al-2Gd Alloy. Journal of Materials Engineering and Performance, 2022, 31, 6617-6625.	2.5	3
9	Advances in micro-arc oxidation coatings on Mg-Li alloys. Applied Surface Science Advances, 2022, 8, 100219.	6.8	27
10	Corrosion behavior and mechanism of Mg–Er–Zn–Zr alloys in different states. Journal of Materials Research and Technology, 2022, 19, 30-45.	5.8	21
11	Achieving high strength in a Mg–Li–Zn–Y alloy by α-Mg precipitation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143272.	5.6	10
12	Recent advances of electromagnetic interference shielding Mg matrix materials and their processings: A review. Transactions of Nonferrous Metals Society of China, 2022, 32, 1385-1404.	4.2	11
13	A Novel Ordered B2 Particle Strengthened Mg–Li–Zn Alloy. Advanced Engineering Materials, 2022, 24, .	3.5	1
14	Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy. Journal of Materials Science and Technology, 2021, 61, 197-203.	10.7	60
15	Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. Journal of Magnesium and Alloys, 2021, 9, 41-56.	11.9	217
16	Interface behavior and tensile properties of Mg-14Li-3Al-2Gd sheets prepared by four-layer accumulative roll bonding. Journal of Manufacturing Processes, 2021, 61, 254-260.	5.9	27
17	Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 30-45.	4.9	126
18	Modifying microstructures and tensile properties of Mg-Sm based alloy via extrusion ratio. Journal of Magnesium and Alloys, 2021, 9, 1098-1098.	11.9	34

#	Article	IF	CITATIONS
19	Microstructure and mechanical properties of high-strength high-pressure die-cast Mg–4Al–3La–1Ca–0.3Mn alloy. Rare Metals, 2021, 40, 2956-2963.	7.1	31
20	Microstructure and mechanical properties of Mg-14Li-1Al/MWCNTs composites prepared by electrophoretic deposition and accumulative roll bonding. Journal of Manufacturing Processes, 2021, 72, 431-438.	5.9	6
21	Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy. Journal of Materials Science and Technology, 2020, 39, 124-134.	10.7	93
22	Microstructure and Mechanical Properties of Mg–14Li–3Al–2Gd Alloy Processed by Multilayer Accumulative Roll Bonding. Advanced Engineering Materials, 2020, 22, 1900774.	3.5	6
23	Improvement of electromagnetic shielding properties for Mg-8Li-6Y-2Zn alloy by heat treatment and hot rolling. Journal of Materials Science: Materials in Electronics, 2020, 31, 17249-17257.	2.2	6
24	Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy. Journal of Materials Science and Technology, 2020, 53, 174-184.	10.7	24
25	Combination effects of Yb addition and cryogenic-rolling on microstructure and mechanical properties of LA141 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139611.	5.6	56
26	Enhanced Electromagnetic Interference Shielding in a Duplex-Phase Mg–9Li–3Al–1Zn Alloy Processed by Accumulative Roll Bonding. Acta Metallurgica Sinica (English Letters), 2020, 33, 490-499.	2.9	83
27	Microstructure and mechanical properties of ultra-lightweight Mg-Li-Al/Al-Li composite produced by accumulative roll bonding at ambient temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139494.	5.6	30
28	Effect of Annealing Temperature on the Microstructure and Mechanical Properties of the Al/Mg–8Li–3Al–1Zn/Al Composite Plates Fabricated by Hot Rolling. Physics of Metals and Metallography, 2019, 120, 447-453.	1.0	2
29	Characterization of elevated-temperature high strength and decent thermal conductivity extruded Mg-Er-Y-Zn alloy containing nano-spaced stacking faults. Materials Characterization, 2019, 155, 109823.	4.4	29
30	Development of extruded Mg-6Er-3Y-1.5Zn-0.4Mn (wt.%) alloy with high strength at elevated temperature. Journal of Materials Science and Technology, 2019, 35, 2365-2374.	10.7	39
31	Effect of cryogenic rolling process on microstructure and mechanical properties of Mg-14Li-1Al alloy. Materials Characterization, 2019, 157, 109903.	4.4	22
32	Microstructures and mechanical properties of a high pressure die-cast Mg–4Alâ^'4Gdâ^'0.3Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138254.	5.6	19
33	Microstructure and mechanical properties of Mg-5Li-1Al sheets processed by cross accumulative roll bonding. Journal of Manufacturing Processes, 2019, 46, 139-146.	5.9	16
34	Development of Hot-Extruded Mg–RE–Zn Alloy Bar with High Mechanical Properties. Materials, 2019, 12, 1722.	2.9	10
35	Hydrothermal Synthesis of Protective Coating on Mg Alloy for Degradable Implant Applications. Coatings, 2019, 9, 160.	2.6	11
36	Effect of Y and Ce addition on microstructures and mechanical properties of LZ91 alloys. Journal of Alloys and Compounds, 2019, 800, 72-80.	5.5	31

#	Article	IF	CITATIONS
37	Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase. Journal of Alloys and Compounds, 2019, 795, 436-445.	5.5	43
38	The Effect of Y/Er and Zn Addition on the Microstructure and Mechanical Properties of Mg-11Li Alloy. Materials, 2019, 12, 3066.	2.9	4
39	Microstructure Evolution of Extruded Mg–6Gd Alloy Under 175°C and 150ÂMPa. Acta Metallurgica Sinica (English Letters), 2019, 32, 245-252.	2.9	10
40	An Unusual Texture Evolution in Extruded Mg–14Gd–Based Alloy during Annealing. Advanced Engineering Materials, 2018, 20, 1701129.	3.5	6
41	Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment. Journal of Materials Science and Technology, 2018, 34, 1076-1084.	10.7	89
42	Microstructure and mechanical properties of Mg-5Li-1Al sheets prepared by accumulative roll bonding. Journal of Materials Science and Technology, 2018, 34, 317-323.	10.7	59
43	Synergistic effect of carbon nanotube and graphene nanoplatelet addition on microstructure and mechanical properties of AZ31 prepared using hot-pressing sintering. Journal of Materials Research, 2018, 33, 4261-4269.	2.6	11
44	Effect of Minor Er on the Microstructure and Properties of Al-6.0Mg-0.4Mn-0.1Cr-0.1Zr Alloys. Journal of Materials Engineering and Performance, 2018, 27, 5709-5717.	2.5	5
45	Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. Journal of Magnesium and Alloys, 2018, 6, 277-291.	11.9	554
46	Effect of Sc and Zr on Microstructure and Mechanical Properties of As ast Al–Li–Cu Alloys. Advanced Engineering Materials, 2018, 20, 1700898.	3.5	17
47	Microstructure, Texture, and Mechanical Properties of Alternate <i>α</i> / <i>β</i> Mg–Li Composite Sheets Prepared by Accumulative Roll Bonding. Advanced Engineering Materials, 2017, 19, 1600817.	3.5	15
48	Microstructure and Mechanical Properties of CNT-Reinforced AZ31 Matrix Composites Prepared Using Hot-Press Sintering. Journal of Materials Engineering and Performance, 2017, 26, 5495-5500.	2.5	21
49	Al-Nd intermetallic phase stability and its effects on mechanical properties and corrosion resistance of HPDC Mg-4Al-4Nd-0.2Mn alloy. Journal of Alloys and Compounds, 2017, 691, 634-643.	5.5	39
50	Microstructure and Mechanical Properties of Mg-8Li-(0, 1, 2)Ca-(0, 2)Gd Alloys. Journal of Materials Engineering and Performance, 2017, 26, 4831-4837.	2.5	7
51	Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy. International Journal of Materials Research, 2017, 108, 427-430.	0.3	2
52	Degraded and osteogenic properties of coated magnesium alloy AZ31; an experimental study. Journal of Orthopaedic Surgery and Research, 2016, 11, 30.	2.3	18
53	Al–RE Intermetallic Phase Stability and Effects on Corrosion Behavior in Coldâ€Chamber HPDC AE44 Alloy. Advanced Engineering Materials, 2016, 18, 148-155.	3.5	15
54	New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults. Scientific Reports, 2015, 5, 13933.	3.3	47

#	Article	IF	CITATIONS
55	Microstructure and mechanical properties of LA51 and LA51–0.5Y alloys with different accumulated strains and rolling temperatures. Materials and Design, 2015, 85, 190-196.	7.0	18
56	Development of Highâ€Performance Mg Alloy via Introducing Profuse Long Period Stacking Ordered Phase and Stacking Faults. Advanced Engineering Materials, 2015, 17, 876-884.	3.5	19
57	Microstructure and texture evolution of Mg–Li alloy during rolling. International Journal of Materials Research, 2014, 105, 1111-1117.	0.3	7
58	Influence of the combined addition of Y and Nd on the microstructure and mechanical properties of Mg–Li alloy. Materials & Design, 2014, 57, 245-249.	5.1	51
59	Investigation of high-strength and superplastic Mg–Y–Gd–Zn alloy. Materials & Design, 2014, 61, 168-176.	5.1	76
60	Influence of Y and Nd on microstructure, texture and anisotropy of Mg–5Li–1Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 1-7.	5.6	50
61	Notch tensile behavior of extruded Mg–Y–Zn alloys containing long period stacking ordered phase. Materials & Design, 2014, 56, 495-499.	5.1	12
62	Microstructures and corrosion resistance of three typical superlight Mg–Li alloys. International Journal of Materials Research, 2014, 105, 58-64.	0.3	4
63	Microstructure and mechanical properties of high-performance Mg–Y–Er–Zn extruded alloy. Materials & Design, 2014, 54, 256-263.	5.1	52
64	Compression properties at different loading directions of as-extruded Mg–9RY–4Zn (RY: Y-rich misch) Tj ET	Qq0 <u>5</u> 0 rf	gBT /Overlock
65	Experimental study on strengthening of Mg–Li alloy by introducing long-period stacking ordered structure. Scripta Materialia, 2013, 68, 675-678.	5.2	50
66	Microstructure and high mechanical properties of Mg–9RY–4Zn (RY: Y-rich misch metal) alloy with long period stacking ordered phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 540, 38-45.	5.6	63
67	Effect of Ce on microstructure, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al-based alloy. Journal of Alloys and Compounds, 2011, 509, 1069-1078.	5.5	101
68	Influence of yttrium on microstructure and mechanical properties of as-cast Mg–5Li–3Al–2Zn alloy. Journal of Alloys and Compounds, 2011, 509, 9045-9049.	5.5	63
69	Microstructure and mechanical properties of Mg–Gd–Dy–Zn alloy with long period stacking ordered structure or stacking faults. Journal of Alloys and Compounds, 2011, 509, 7717-7722.	5.5	70
70	Microstructures and mechanical properties of heat-resistant HPDC Mg–4Al-based alloys containing cheap misch metal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2670-2677.	5.6	33
71	Effect of the long periodic stacking structure and W-phase on the microstructures and mechanical properties of the Mg–8Gd–xZn–0.4Zr alloys. Materials & Design, 2010, 31, 210-219.	5.1	46
72	Microstructures and mechanical properties of heat-resistant high-pressure die-cast Mg–4Al–xI a–0.3Mn (x=1, 2, 4, 6) alloys, Materials Science &: Engineering A: Structural Materials:	5.6	71

Mg–4Al–xLa–0.3Mn (x=1, 2, 4, 6) alloys. Materials Science & amp; Engineering A: Structural Materials: 5.6 71
Properties, Microstructure and Processing, 2010, 527, 2527-2537.

#	Article	IF	CITATIONS
73	Effect of substituting cerium-rich mischmetal with lanthanum on microstructure and mechanical properties of die-cast Mg–Al–RE alloys. Materials & Design, 2009, 30, 2372-2378.	5.1	96
74	Effect of Zn concentration on the microstructures and mechanical properties of extruded Mg–7Y–4Gd–0.4Zr alloys. Journal of Materials Science, 2009, 44, 74-83.	3.7	33
75	Microstructure, tensile properties, and creep behavior of high-pressure die-cast Mg–4Al–4RE–0.4Mn (REÂ=ÂLa, Ce) alloys. Journal of Materials Science, 2009, 44, 2046-2054.	3.7	59
76	Microstructures, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al–0.4Mn–xPr (x=1, 2, 4, 6) alloys. Journal of Alloys and Compounds, 2009, 480, 810-819.	5.5	44
77	Influence of Zn content on the microstructure and mechanical properties of extruded Mg–5Y–4Gd–0.4Zr alloy. Journal of Alloys and Compounds, 2009, 481, 811-818.	5.5	60
78	Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg–4Al-based alloy. Journal of Alloys and Compounds, 2008, 464, 556-564.	5.5	140
79	Microstructure, Mechanical Properties and Strain Hardening Behavior of Alternative α/β Mg-Li Composite Sheets Prepared by Accumulative Roll Bonding. Metals and Materials International, 0, , 1.	3.4	2