List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9730976/publications.pdf Version: 2024-02-01

		81900	85541
121	5,404	39	71
papers	citations	h-index	g-index
101	101	101	2516
121	121	121	2516
all docs	docs citations	times ranked	citing authors

ΙΠΝ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Exploring the relationship between critical state and particle shape for granular materials. Journal of the Mechanics and Physics of Solids, 2015, 84, 196-213.	4.8	258
2	Collapse of loose sand with the addition of fines: the role of particle shape. Geotechnique, 2012, 62, 1111-1125.	4.0	251
3	Generalized Approach for Prediction of Jet Grout Column Diameter. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 2060-2069.	3.0	236
4	Quantifying and modelling fabric anisotropy of granular soils. Geotechnique, 2008, 58, 237-248.	4.0	234
5	Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions. Geotechnique, 2011, 61, 59-73.	4.0	182
6	Undrained anisotropy and rotational shear in granular soil. Geotechnique, 2007, 57, 371-384.	4.0	179
7	Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution. Engineering Geology, 2013, 155, 69-79.	6.3	172
8	Failure Modes of Sand in Undrained Cyclic Loading: Impact of Sample Preparation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, 152-169.	3.0	172
9	Shear stiffness of granular material at small strains: does it depend on grain size?. Geotechnique, 2013, 63, 165-179.	4.0	162
10	Soil-tunnel interaction modelling for shield tunnels considering shearing dislocation in longitudinal joints. Tunnelling and Underground Space Technology, 2018, 78, 168-177.	6.2	155
11	Interpretation of Seismic Vertical Amplification Observed at an Array Site. Bulletin of the Seismological Society of America, 2000, 90, 275-285.	2.3	139
12	Identification of Tunnel Settlement Caused by Land Subsidence in Soft Deposit of Shanghai. Journal of Performance of Constructed Facilities, 2017, 31, .	2.0	139
13	A simple approach to integration of acceleration data for dynamic soil–structure interaction analysis. Soil Dynamics and Earthquake Engineering, 2006, 26, 725-734.	3.8	122
14	Shear wave velocity and stiffness of sand: the role of non-plastic fines. Geotechnique, 2016, 66, 500-514.	4.0	119
15	Bender element tests in dry and saturated sand: Signal interpretation and result comparison. Soils and Foundations, 2015, 55, 951-962.	3.1	116
16	Laboratory measurements of small strain properties of dry sands by bender element. Soils and Foundations, 2013, 53, 735-745.	3.1	110
17	Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China: A case study. Engineering Geology, 2014, 174, 36-45.	6.3	106
18	State-Dependent Strength of Sands from the Perspective of Unified Modeling. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 186-198.	3.0	102

#	Article	IF	CITATIONS
19	A discrete element analysis of elastic properties of granular materials. Granular Matter, 2013, 15, 139-147.	2.2	92
20	Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring-shear tests. Geotextiles and Geomembranes, 2011, 29, 462-471.	4.6	87
21	Behaviour of jacked and driven piles in sandy soil. Geotechnique, 2006, 56, 245-259.	4.0	85
22	Non-uniqueness of flow liquefaction line for loose sand. Geotechnique, 2002, 52, 757-760.	4.0	85
23	On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis. Granular Matter, 2012, 14, 433-447.	2.2	81
24	Evaluating Liquefaction Strength of Partially Saturated Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 975-979.	3.0	80
25	Cyclic Strength of Sand under Sustained Shear Stress. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2011, 137, 1275-1285.	3.0	80
26	The critical state friction angle of granular materials: does it depend on grading?. Acta Geotechnica, 2018, 13, 535-547.	5.7	78
27	State variables for silty sands: Global void ratio or skeleton void ratio?. Soils and Foundations, 2015, 55, 99-111.	3.1	75
28	Base Capacity of Open-Ended Steel Pipe Piles in Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2012, 138, 1116-1128.	3.0	74
29	Observed Effects of Interparticle Friction and Particle Size on Shear Behavior of Granular Materials. International Journal of Geomechanics, 2016, 16, .	2.7	74
30	On the role of grain shape in static liquefaction of sand–fines mixtures. Geotechnique, 2014, 64, 740-745.	4.0	71
31	Shear wave velocity in sand: effect of grain shape. Geotechnique, 2018, 68, 742-748.	4.0	71
32	Influence Zone for End Bearing of Piles in Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2006, 132, 1229-1237.	3.0	60
33	Is the quasi-steady state a real behaviour? A micromechanical perspective. Geotechnique, 2011, 61, 175-183.	4.0	58
34	DEM simulations of the small strain stiffness of granular soils: effect of stress ratio. Granular Matter, 2013, 15, 287-298.	2.2	56
35	Numerical analysis of the long-term performance of offshore wind turbines supported by monopiles. Ocean Engineering, 2017, 136, 94-105.	4.3	56
36	A numerical analysis of the shear behavior of granular soil with fines. Particuology, 2015, 21, 160-172.	3.6	55

#	Article	IF	CITATIONS
37	Site response to multi-directional earthquake loading: A practical procedure. Soil Dynamics and Earthquake Engineering, 2009, 29, 710-721.	3.8	50
38	Three-Dimensional Noncoaxial Plasticity Modeling of Shear Band Formation in Geomaterials. Journal of Engineering Mechanics - ASCE, 2008, 134, 322-329.	2.9	47
39	Micro-scale modeling of anisotropy effects on undrained behavior of granular soils. Granular Matter, 2013, 15, 557-572.	2.2	45
40	Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation. Geotechnique, 2020, 70, 317-331.	4.0	41
41	Multiobjective Path Optimization for Critical Infrastructure Links with Consideration to Seismic Resilience. Computer-Aided Civil and Infrastructure Engineering, 2017, 32, 836-855.	9.8	40
42	Effect of scour on the structural response of an offshore wind turbine supported on tripod foundation. Applied Ocean Research, 2018, 73, 179-189.	4.1	39
43	An operator-split ALE model for large deformation analysis of geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31, 1375-1399.	3.3	38
44	Characteristics of vertical and horizontal ground motions recorded during the Niigata-ken Chuetsu, Japan Earthquake of 23 October 2004. Engineering Geology, 2007, 94, 50-64.	6.3	38
45	Horizontal and vertical components of earthquake ground motions at liquefiable sites. Soil Dynamics and Earthquake Engineering, 2002, 22, 229-240.	3.8	37
46	Observed Performance of Long Steel H-Piles Jacked into Sandy Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2006, 132, 24-35.	3.0	37
47	Factors affecting site response to multi-directional earthquake loading. Engineering Geology, 2009, 107, 77-87.	6.3	36
48	IMPORTANCE OF FLOW CONDITION ON SEISMIC WAVES AT A SATURATED POROUS SOLID BOUNDARY. Journal of Sound and Vibration, 1999, 221, 391-413.	3.9	35
49	DEM investigation on the effect of sample preparation on the shear behavior of granular soil. Particuology, 2016, 25, 111-121.	3.6	35
50	Small-strain shear modulus of volcanic granular soil: An experimental investigation. Soil Dynamics and Earthquake Engineering, 2016, 86, 15-24.	3.8	33
51	Saturation effects on horizontal and vertical motions in a layered soil–bedrock system due to inclined SV waves. Soil Dynamics and Earthquake Engineering, 2001, 21, 527-536.	3.8	32
52	An analytical solution for the transient response of a cylindrical lined cavity in a poroelastic medium. Soil Dynamics and Earthquake Engineering, 2013, 46, 30-40.	3.8	29
53	Micromechanical origin of angle of repose in granular materials. Granular Matter, 2017, 19, 1.	2.2	28
54	Dynamic response of deep soft soil deposits under multidirectional earthquake loading. Engineering Geology, 2011, 121, 55-65.	6.3	26

#	Article	IF	CITATIONS
55	Influence of water saturation on horizontal and vertical motion at a porous soil interface induced by incident SV wave. Soil Dynamics and Earthquake Engineering, 2000, 19, 339-346.	3.8	22
56	Estimation of the Diameter of Jet-Grouted Column Based on Turbulent Kinematic Flow Theory. , 2012, , .		21
57	Saturation Effects of Soils on Ground Motion at Free Surface Due to Incident SV Waves. Journal of Engineering Mechanics - ASCE, 2002, 128, 1295-1303.	2.9	19
58	An exact solution for three-dimensional (3D) dynamic response of a cylindrical lined tunnel in saturated soil to an internal blast load. Soil Dynamics and Earthquake Engineering, 2016, 90, 32-37.	3.8	19
59	Frequency-Dependent Amplification of Unsaturated Surface Soil Layer. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2006, 132, 526-531.	3.0	18
60	A unified framework for evaluating in situ state of sand with varying fines content. Geotechnique, 2018, 68, 177-183.	4.0	18
61	Critical state of polymer-coated sands. Geotechnique, 2019, 69, 841-846.	4.0	18
62	Improved Evaluation of Interface Friction on Steel Pipe Pile in Sand. Journal of Performance of Constructed Facilities, 2012, 26, 170-179.	2.0	17
63	Numerical prediction of ground vibrations induced by high-speed trains including wheel–rail–soil coupled effects. Soil Dynamics and Earthquake Engineering, 2015, 77, 274-278.	3.8	16
64	Effects of Pore-Water Saturation on Seismic Reflection and Transmission from a Boundary of Porous Soils. Bulletin of the Seismological Society of America, 2000, 90, 1313-1317.	2.3	15
65	Discrete Element Analysis of the <i>K</i> ₀ of Granular Soil and Its Relation to Small Strain Shear Stiffness. International Journal of Geomechanics, 2018, 18, .	2.7	14
66	Differentiation of Noisy Experimental Data for Interpretation of Nonlinear Stress-Strain Behavior. Journal of Engineering Mechanics - ASCE, 1998, 124, 705-712.	2.9	13
67	On seismic landslide hazard assessment. Geotechnique, 2007, 57, 707-713.	4.0	13
68	Liquefaction resistance of sand in relation to P-wave velocity. Geotechnique, 2002, 52, 295-298.	4.0	13
69	Influence of water saturation on horizontal and vertical motion at a porous soil interface induced by incident P wave. Soil Dynamics and Earthquake Engineering, 2000, 19, 575-581.	3.8	12
70	Laboratory investigation on relationship between degree of saturation, B-value and P-wave velocity. Journal of Central South University, 2013, 20, 2001-2007.	3.0	12
71	Identifying boundary between near field and far field in ground vibration caused by surface loading. Journal of Central South University, 2014, 21, 3284-3294.	3.0	12
72	The influence of the degree of saturation on dynamic response of a cylindrical lined cavity in a nearly saturated medium. Soil Dynamics and Earthquake Engineering, 2015, 71, 27-30.	3.8	12

#	Article	IF	CITATIONS
73	Field measurement and FE prediction of vibration reduction due to pile-raft foundation for high-tech workshop. Soil Dynamics and Earthquake Engineering, 2017, 101, 264-268.	3.8	12
74	Three-dimensional dynamic response of a lined tunnel in a half-space of saturated soil under internal explosive loading. Soil Dynamics and Earthquake Engineering, 2017, 101, 157-161.	3.8	12
75	Determination of seismic compression of sand subjected to two horizontal components of earthquake ground motions. Soil Dynamics and Earthquake Engineering, 2017, 92, 330-333.	3.8	12
76	Computation of individual contributions of two compression waves in vibration of water-saturated soils. Computers and Geotechnics, 2000, 27, 79-100.	4.7	11
77	Use of State-Dependent Strength in Estimating End Bearing Capacity of Piles in Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 1010-1014.	3.0	11
78	Transient dynamic response of a shallow buried lined tunnel in saturated soil. Soil Dynamics and Earthquake Engineering, 2017, 94, 13-17.	3.8	11
79	Shear modulus and damping ratio of saturated coral sand under generalised cyclic loadings. Geotechnique, 2024, 74, 116-133.	4.0	11
80	Shear Strength of Assemblies of Frictionless Particles. International Journal of Geomechanics, 2017, 17, .	2.7	10
81	Analytical study of saturation effects on seismic vertical amplification of a soil layer. Geotechnique, 2001, 51, 161-165.	4.0	10
82	Influence of particle-size disparity on cyclic liquefaction resistance of silty sands. Geotechnique Letters, 2020, 10, 155-161.	1.2	9
83	Characterising the effect of particle size disparity on liquefaction resistance of non-plastic silty sands from a critical state perspective. Geotechnique, 2023, 73, 323-336.	4.0	8
84	DEM analysis of soil fabric effects on behaviour of sand S. YIMSIRI and K. SOGA (2010).Géotechnique60, No. 6, 483–495. Geotechnique, 2011, 61, 715-719.	4.0	6
85	Laboratory Measurement of Small-Strain Shear Modulus of Volcanic Soil. , 2014, , .		6
86	Effect of Particle Shape on the Formation of Sandpile. Springer Proceedings in Physics, 2017, , 767-776.	0.2	6
87	Seismic Performance of a River Dike Improved by Sand Compaction Piles. Journal of Performance of Constructed Facilities, 2008, 22, 381-390.	2.0	5
88	Mechanism and Assessment of Interface Shear between Steel Pipe Pile and Sand. , 2011, , .		5
89	Nonlinear site effects on strong ground motion at a reclaimed island. Canadian Geotechnical Journal, 2000, 37, 26-39.	2.8	5
90	PS wave based parallel seismic test for pile length assessment. Soils and Foundations, 2016, 56, 440-448.	3.1	4

#	Article	IF	CITATIONS
91	Dynamic response of saturated layered half-space with different hydraulic interface conditions. Archive of Applied Mechanics, 1998, 68, 677-688.	2.2	3
92	Interpretation of torsional shear results for nonlinear stress–strain relationship. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32, 1247-1266.	3.3	3
93	Critical state of polymer-coated sands. Geotechnique, 2020, 70, 839-841.	4.0	3
94	Discussion of "Shaft Resistance of Single Vertical and Batter Piles Driven in Sand―by A. Hanna and T. Q. Nguyen. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2005, 131, 137-138.	3.0	2
95	A stepwise damping-solvent extraction method for large-scale dynamic soil–structure interaction analysis in time domain. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32, 415-436.	3.3	2
96	Is the quasi-steady state a real behaviour? A micromechanical perspective. J. YANG and B. B. DAI (2011).Géotechnique61, No. 2, 175–183, http://dx.doi.org/10.1680/geot.8.P.129. Geotechnique, 2012, 62, 466-468.	4.0	2
97	Reappraisal of vertical motion effects on soil liquefaction. Geotechnique, 2004, 54, 671-676.	4.0	2
98	Rayleigh surface waves in an idealised partially saturated soil. Geotechnique, 2005, 55, 409-414.	4.0	2
99	Discussion of "Kinematic Pile Response to Vertical P-Wave Seismic Excitation―by George Mylonakis and George Gazetas. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 119-120.	3.0	1
100	Long-Term Displacement of Concrete Anchor Foundation of Suspension Bridge in Soft Soils. , 2006, , 215.		1
101	Closure to "Cyclic Strength of Sand under Sustained Shear Stress―by J. Yang and H. Y. Sze. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 837-839.	3.0	1
102	On the physical meaning of equivalent skeleton void ratio for granular soil with fines. , 2013, , .		1
103	Theoretical analysis of a row of piles as passive barriers and an equivalent in-filled trench model. Journal of Central South University, 2015, 22, 1919-1928.	3.0	1
104	Field Measurement and Analysis of Ground Vibration Induced by High-Speed Train. , 2018, , 119-132.		1
105	Influence of Water Saturation on Seismic Site Amplification. , 2006, , 193-198.		1
106	Laboratory Measurements of the Dynamic Properties of Shanghai Clay. , 2018, , 585-592.		1
107	Pore pressure coefficient for soil and rock and its relation to compressional wave velocity. Geotechnique, 2005, 55, 251-256.	4.0	1
108	ON THE VIBRATION OF SATURATED LAYERED HALF-SPACE DUE TO LOW FREQUENCY EXCITATION. Journal of Sound and Vibration, 1998, 213, 561-568.	3.9	0

#	Article	IF	CITATIONS
109	Title is missing!. Journal of Earthquake Engineering, 2000, 4, 1.	2.5	0
110	Discussion of "Passive Earth Pressure with Critical State Concept―by Yung-Show Fang, Ying-Chieh Ho, and Tsang-Jiang Chen. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2003, 129, 960-961.	3.0	0
111	Closure to "Observed Performance of Long Steel H-piles Jacked into Sandy Soils―by J. Yang, L. G. Tham, P. K. K. Lee and F. Yu. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 900-901.	3.0	0
112	Discussion: Behaviour of jacked and driven piles in sandy soil. Geotechnique, 2007, 57, 475-478.	4.0	0
113	Closure to "Frequency-Dependent Amplification of Unsaturated Surface Soil Layer―by J. Yang. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 1332-1335.	3.0	0
114	Discussion: On seismic landslide hazard assessment. Geotechnique, 2008, 58, 831-834.	4.0	0
115	Initial Static Shear Effect on Cyclic Liquefaction Behaviour of Sand. HKIE Transactions, 2009, 16, 56-62.	0.1	Ο
116	Relating the maximum radial stress on pile shaft to pile base resistance. Geotechnique, 2011, 61, 1087-1092.	4.0	0
117	On Correction Factors for Liquefaction Analysis of Embankments and Slopes. , 2013, , .		Ο
118	Shear wave velocity and shear modulus of silty sand. Japanese Geotechnical Society Special Publication, 2016, 2, 907-910.	0.2	0
119	GROUND MOVEMENTS DUE TO EXCAVATION WITH LATERAL SUPPORTING SYSTEMS. , 2005, , .		0
120	Soil unit weight estimated from CPTu in offshore soils. , 2010, , 389-394.		0
121	A note on Rayleigh wave velocity in saturated soils with compressible constituents. Canadian Geotechnical Journal, 2001, 38, 1360-1365.	2.8	0