Li-Chang Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/973086/publications.pdf

Version: 2024-02-01

65 papers	9,082 citations	38 h-index	95083 68 g-index
69	69	69	12530 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nature Communications, 2017, 8, 14627.	5.8	912
2	An Amorphous Carbon Nitride Photocatalyst with Greatly Extended Visibleâ€Lightâ€Responsive Range for Photocatalytic Hydrogen Generation. Advanced Materials, 2015, 27, 4572-4577.	11.1	771
3	Carbon–sulfur composites for Li–S batteries: status and prospects. Journal of Materials Chemistry A, 2013, 1, 9382.	5.2	757
4	Selective Breaking of Hydrogen Bonds of Layered Carbon Nitride for Visible Light Photocatalysis. Advanced Materials, 2016, 28, 6471-6477.	11.1	507
5	A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries. Energy and Environmental Science, 2012, 5, 8901.	15.6	468
6	Surface Chemistry in Cobalt Phosphide-Stabilized Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2018, 140, 1455-1459.	6.6	393
7	A red anatase TiO2 photocatalyst for solar energy conversion. Energy and Environmental Science, 2012, 5, 9603.	15.6	379
8	Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. Journal of Materials Chemistry, 2012, 22, 6746.	6.7	356
9	The Regulating Role of Carbon Nanotubes and Graphene in Lithiumâ€lon and Lithiumâ€"Sulfur Batteries. Advanced Materials, 2019, 31, e1800863.	11.1	339
10	Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nature Communications, 2015, 6, 8569.	5.8	336
11	A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 2022, 5, 205-213.	11.5	277
12	Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis. Nano Letters, 2015, 15, 7704-7710.	4.5	233
13	An Unusual Strong Visibleâ€Light Absorption Band in Red Anatase TiO ₂ Photocatalyst Induced by Atomic Hydrogenâ€Occupied Oxygen Vacancies. Advanced Materials, 2018, 30, 1704479.	11.1	231
14	Single-Atom Mn–N ₄ Site-Catalyzed Peroxone Reaction for the Efficient Production of Hydroxyl Radicals in an Acidic Solution. Journal of the American Chemical Society, 2019, 141, 12005-12010.	6.6	203
15	An Anionâ€Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes. Advanced Energy Materials, 2020, 10, 1903843.	10.2	186
16	Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8, 14560.	5.8	184
17	Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy, 2017, 42, 205-214.	8.2	183
18	An Aluminum–Sulfur Battery with a Fast Kinetic Response. Angewandte Chemie - International Edition, 2018, 57, 1898-1902.	7.2	154

#	Article	IF	CITATIONS
19	Kinetically Enhanced Electrochemical Redox of Polysulfides on Polymeric Carbon Nitrides for Improved Lithium–Sulfur Batteries. ACS Applied Materials & Transport of States (1998) (19	4.0	149
20	Polar interface-induced improvement in high photocatalytic hydrogen evolution over ZnO–CdS heterostructures. Energy and Environmental Science, 2011, 4, 3976.	15.6	147
21	Ultrafast Growth of Highâ€Quality Monolayer WSe ₂ on Au. Advanced Materials, 2017, 29, 1700990.	11.1	139
22	Heteroatomâ€Modulated Switching of Photocatalytic Hydrogen and Oxygen Evolution Preferences of Anatase TiO ₂ Microspheres. Advanced Functional Materials, 2012, 22, 3233-3238.	7.8	128
23	Nitrogen electroreduction performance of transition metal dimers embedded into N-doped graphene: a theoretical prediction. Journal of Materials Chemistry A, 2020, 8, 4533-4543.	5.2	124
24	CdPS ₃ nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science, 2020, 370, 596-600.	6.0	120
25	A Universal Seeding Strategy to Synthesize Single Atom Catalysts on 2D Materials for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 1906157.	7.8	91
26	B-terminated (111) polar surfaces of BP and BAs: promising metal-free electrocatalysts with large reaction regions for nitrogen fixation. Journal of Materials Chemistry A, 2019, 7, 13284-13292.	5.2	87
27	Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate. Physical Chemistry Chemical Physics, 2007, 9, 1499-1502.	1.3	83
28	Greatly Enhanced Electronic Conduction and Lithium Storage of Faceted TiO ₂ Crystals Supported on Metallic Substrates by Tuning Crystallographic Orientation of TiO ₂ . Advanced Materials, 2015, 27, 3507-3512.	11.1	79
29	Unlocking Bifunctional Electrocatalytic Activity for CO ₂ Reduction Reaction by Win-Win Metal–Oxide Cooperation. ACS Energy Letters, 2018, 3, 2816-2822.	8.8	76
30	Homogeneous Doping of Substitutional Nitrogen/Carbon in TiO ₂ Plates for Visible Light Photocatalytic Water Oxidation. Advanced Functional Materials, 2019, 29, 1901943.	7.8	61
31	Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3Ti, Mo-enriched, and Cr-rich co-precipitates. Acta Materialia, 2021, 209, 116788.	3.8	54
32	Visualizing the roles of graphene for excellent lithium storage. Journal of Materials Chemistry A, 2014, 2, 17808-17814.	5.2	48
33	Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nature Communications, 2022, 13, .	5.8	47
34	An Aluminum–Sulfur Battery with a Fast Kinetic Response. Angewandte Chemie, 2018, 130, 1916-1920.	1.6	43
35	Suppressing lithium dendrite formation by slowing its desolvation kinetics. Chemical Communications, 2019, 55, 13211-13214.	2.2	43
36	Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt. Nature Communications, 2019, 10, 2809.	5.8	43

#	Article	IF	Citations
37	Phosphorous-doped molybdenum disulfide anchored on silicon as an efficient catalyst for photoelectrochemical hydrogen generation. Applied Catalysis B: Environmental, 2020, 263, 118259.	10.8	40
38	Stability and Catalytic Performance of Single-Atom Catalysts Supported on Doped and Defective Graphene for CO ₂ Hydrogenation to Formic Acid: A First-Principles Study. ACS Applied Nano Materials, 2021, 4, 6893-6902.	2.4	40
39	An alkali metal–selenium battery with a wide temperature range and low self-discharge. Journal of Materials Chemistry A, 2019, 7, 21774-21782.	5.2	38
40	Frustrated Lewis pairs photocatalyst for visible light-driven reduction of CO to multi-carbon chemicals. Nanoscale, 2019, 11, 20777-20784.	2.8	38
41	An ultrasensitive molybdenum-based double-heterojunction phototransistor. Nature Communications, 2021, 12, 4094.	5.8	37
42	Alcohol-Guided Growth of Two-Dimensional Narrow-Band Red-Emitting K ₂ TiF ₆ :Mn ⁴⁺ for White-Light-Emitting Diodes. ACS Applied Materials & Diodes. ACS ACS Applied Materials & Diodes. ACS	4.0	33
43	Strain effect on the catalytic activities of B- and B/N-doped black phosphorene for electrochemical conversion of CO to valuable chemicals. Journal of Materials Chemistry A, 2020, 8, 11986-11995.	5.2	31
44	Monolayer MoSi2N4- as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction. Journal of Materials Science and Technology, 2022, 99, 215-222.	5 . 6	31
45	Na–CO2 battery with NASICON-structured solid-state electrolyte. Nano Energy, 2021, 85, 105972.	8.2	29
46	Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25991-25998.	3.3	28
47	Amorphous Phosphorus-Doped Cobalt Sulfide Modified on Silicon Pyramids for Efficient Solar Water Reduction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37142-37149.	4.0	27
48	Efficient electrochemical reduction of CO to C2 products on the transition metal and boron co-doped black phosphorene. Chinese Chemical Letters, 2022, 33, 2183-2187.	4.8	26
49	High-performance Na–CO ₂ batteries with ZnCo ₂ O ₄ @CNT as the cathode catalyst. Journal of Materials Chemistry A, 2020, 8, 23974-23982.	5.2	25
50	Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets. Science China Materials, 2018, 61, 831-838.	3. 5	22
51	Batteries: A Graphene–Pureâ€ S ulfur Sandwich Structure for Ultrafast, Longâ€Life Lithium–Sulfur Batteries (Adv. Mater. 4/2014). Advanced Materials, 2014, 26, 664-664.	11.1	21
52	Switching Photocatalytic H ₂ and O ₂ Generation Preferences of Rutile TiO ₂ Microspheres with Dominant Reactive Facets by Boron Doping. Journal of Physical Chemistry C, 2015, 119, 84-89.	1.5	18
53	Catalytically Active Site Identification of Molybdenum Disulfide as Gas Cathode in a Nonaqueous Li–CO ₂ Battery. ACS Applied Materials & Interfaces, 2021, 13, 6156-6167.	4.0	18
54	Highly Polymerized Wine-Red Carbon Nitride to Enhance Photoelectrochemical Water Splitting Performance of Hematite. Journal of Physical Chemistry C, 2021, 125, 13273-13282.	1.5	15

#	Article	IF	CITATIONS
55	Controlled Oneâ€pot Synthesis of Nickel Single Atoms Embedded in Carbon Nanotube and Graphene Supports with High Loading. ChemNanoMat, 2020, 6, 1063-1074.	1.5	14
56	Achieving efficient N2 electrochemical reduction by stabilizing the N2H* intermediate with the frustrated Lewis pairs. Journal of Energy Chemistry, 2022, 66, 628-634.	7.1	13
57	Surface Oxygen Vacancies Confined by Ferroelectric Polarization for Tunable CO Oxidation Kinetics. Advanced Materials, 2022, 34, e2202072.	11.1	13
58	Mechanistic insights into interfaces and nitrogen vacancies in cobalt hydroxide/tungsten nitride catalysts to enhance alkaline hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 11323-11330.	5.2	12
59	Molybdenum-doped ZnS sheets with dominant $\{1\ 1\ 1\}$ facets for enhanced visible light photocatalytic activities. Journal of Colloid and Interface Science, 2017, 507, 200-208.	5.0	10
60	Search for an exotic parity-odd spin- and velocity-dependent interaction using a magnetic force microscope. Physical Review D, 2021, 104, .	1.6	9
61	Constructing Anatase–Brookite TiO ₂ Phase Junction by Thermal Topotactic Transition to Promote Charge Separation for Superior Photocatalytic H ₂ Generation. Journal of Physical Chemistry Letters, 2022, 13, 4244-4250.	2.1	9
62	Lithium Batteries: The Regulating Role of Carbon Nanotubes and Graphene in Lithium–lon and Lithium–Sulfur Batteries (Adv. Mater. 9/2019). Advanced Materials, 2019, 31, 1970066.	11.1	8
63	Photocharge Trapping in Two-Sheet Reduced Graphene Oxide–Ti _{0.87} O ₂ Heterostructures and Their Photoreduction and Photomemory Applications. ACS Applied Nano Materials, 2019, 2, 6378-6386.	2.4	6
64	Lithium Anodes: An Anionâ€Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes (Adv. Energy Mater. 14/2020). Advanced Energy Materials, 2020, 10, 2070063.	10.2	3
65	Composition dependent mobility and bandgaps in (La0.05Ba <i>x</i> Sr0.95a^' <i>x</i>)SnO3 epitaxial films. Applied Physics Letters, 2020, 117, .	1.5	2