Amanda Stark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9729408/publications.pdf Version: 2024-02-01

ΔΜΑΝΠΑ STADK

#	Article	IF	CITATIONS
1	The physics of smallâ€amplitude oscillation of the vocal folds. Journal of the Acoustical Society of America, 1988, 83, 1536-1552.	0.5	750
2	Physiologic and acoustic differences between male and female voices. Journal of the Acoustical Society of America, 1989, 85, 1699-1707.	0.5	485
3	Voice Training and Therapy With a Semi-Occluded Vocal Tract: Rationale and Scientific Underpinnings. Journal of Speech, Language, and Hearing Research, 2006, 49, 448-459.	0.7	371
4	Vocal tract area functions from magnetic resonance imaging. Journal of the Acoustical Society of America, 1996, 100, 537-554.	0.5	363
5	Nonlinear source–filter coupling in phonation: Theory. Journal of the Acoustical Society of America, 2008, 123, 2733-2749.	0.5	359
6	Voice simulation with a bodyâ€cover model of the vocal folds. Journal of the Acoustical Society of America, 1995, 97, 1249-1260.	0.5	354
7	On the relation between subglottal pressure and fundamental frequency in phonation. Journal of the Acoustical Society of America, 1989, 85, 901-906.	0.5	318
8	Acoustic interactions of the voice source with the lower vocal tract. Journal of the Acoustical Society of America, 1997, 101, 2234-2243.	0.5	270
9	Vocal fold proteoglycans and their influence on biomechanics. Laryngoscope, 1999, 109, 845-854.	1.1	254
10	A finite-element model of vocal-fold vibration. Journal of the Acoustical Society of America, 2000, 108, 3003-3012.	0.5	232
11	Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results. Journal of the Acoustical Society of America, 1999, 106, 2008-2021.	0.5	212
12	Acoustic impedance of an artificially lengthened and constricted vocal tract. Journal of Voice, 2000, 14, 455-469.	0.6	198
13	Viscosities of Implantable Biomaterials in Vocal Fold Augmentation Surgery. Laryngoscope, 1998, 108, 725-731.	1.1	172
14	A Methodological Study of Hemilaryngeal Phonation. Laryngoscope, 1993, 103, 872???882.	1.1	136
15	Elastic models of vocal fold tissues. Journal of the Acoustical Society of America, 1991, 90, 1326-1331.	0.5	132
16	Phonation threshold pressure in a physical model of the vocal fold mucosa. Journal of the Acoustical Society of America, 1995, 97, 3080-3084.	0.5	128
17	Rules for controlling low-dimensional vocal fold models with muscle activation. Journal of the Acoustical Society of America, 2002, 112, 1064-1076.	0.5	116
18	Hyaluronic Acid (With Fibronectin) As a Bioimplant for the Vocal Fold Mucosa. Laryngoscope, 1999, 109, 1142-1149.	1.1	110

Amanda Stark

#	Article	IF	CITATIONS
19	Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. Journal of Biomechanics, 2004, 37, 1521-1529.	0.9	106
20	Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study. Logopedics Phoniatrics Vocology, 2007, 32, 147-156.	0.5	98
21	Regulating glottal airflow in phonation: Application of the maximum power transfer theorem to a low dimensional phonation model. Journal of the Acoustical Society of America, 2002, 111, 367-376.	0.5	95
22	A Randomized Controlled Trial of Two Semi-Occluded Vocal Tract Voice Therapy Protocols. Journal of Speech, Language, and Hearing Research, 2015, 58, 535-549.	0.7	92
23	Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa. Journal of the Acoustical Society of America, 1997, 101, 3722-3727.	O.5	90
24	Normal modes in a continuum model of vocal fold tissues. Journal of the Acoustical Society of America, 1996, 100, 3345-3354.	0.5	89
25	Normal vibration frequencies of the vocal ligament. Journal of the Acoustical Society of America, 2004, 115, 2264-2269.	0.5	83
26	Observation of perturbations in a lumpedâ€element model of the vocal folds with application to some pathological cases. Journal of the Acoustical Society of America, 1991, 89, 383-394.	0.5	72
27	Viscoelastic shear properties of human vocal fold mucosa: Theoretical characterization based on constitutive modeling. Journal of the Acoustical Society of America, 2000, 107, 565-580.	O.5	68
28	A theoretical study of f0-f1 interaction with application to resonant speaking and singing voice. Journal of Voice, 2004, 18, 292-298.	0.6	65
29	A reflex resonance model of vocal vibrato. Journal of the Acoustical Society of America, 2002, 111, 2272.	0.5	50
30	Toward occupational safety criteria for vocalization. Logopedics Phoniatrics Vocology, 1999, 24, 49-54.	0.5	40
31	Characterization of Flow-resistant Tubes Used for Semi-occluded Vocal Tract Voice Training and Therapy. Journal of Voice, 2017, 31, 113.e1-113.e8.	0.6	40
32	Viscoelastic modeling of canine vocalis muscle in relaxation. Journal of the Acoustical Society of America, 1985, 78, 1939-1943.	0.5	38
33	A two-dimensional biomechanical model of vocal fold posturing. Journal of the Acoustical Society of America, 2007, 121, 2254-2260.	O.5	37
34	Methodology for rheological testing of engineered biomaterials at low audio frequencies. Journal of the Acoustical Society of America, 2004, 115, 392-401.	0.5	33
35	The evolution of the syrinx: An acoustic theory. PLoS Biology, 2019, 17, e2006507.	2.6	33
36	Acoustics of the tenor high voice. Journal of the Acoustical Society of America, 1994, 95, 1133-1142.	0.5	32

Amanda Stark

#	Article	IF	CITATIONS
37	Current Topics in Voice Production Mechanisms. Acta Oto-Laryngologica, 1993, 113, 421-427.	0.3	31
38	The Human Instrument. Scientific American, 2008, 298, 94-101.	1.0	30
39	Sensitivity of Source–Filter Interaction to Specific Vocal Tract Shapes. IEEE/ACM Transactions on Audio Speech and Language Processing, 2016, 24, 2507-2515.	4.0	19
40	Source and filter adjustments affecting the perception of the vocal qualities twang and yawn. Logopedics Phoniatrics Vocology, 2003, 28, 147-155.	0.5	18
41	Laryngeal Muscle Activity in Giggle: A Damped Oscillation Model. Journal of Voice, 2008, 22, 644-648.	0.6	18
42	Benchmarks for time-domain simulation of sound propagation in soft-walled airways: Steady configurations. Journal of the Acoustical Society of America, 2014, 136, 3249-3261.	0.5	16
43	A Formant Range Profile for Singers. Journal of Voice, 2017, 31, 382.e9-382.e13.	0.6	16
44	Vocalization with semi-occluded airways is favorable for optimizing sound production. PLoS Computational Biology, 2021, 17, e1008744.	1.5	15
45	Radiation efficiency for long-range vocal communication in mammals and birds. Journal of the Acoustical Society of America, 2018, 143, 2813-2824.	0.5	14
46	What is vocology?. Logopedics Phoniatrics Vocology, 1996, 21, 5-6.	0.5	12
47	Regulation of laryngeal resistance and maximum power transfer with semi-occluded airway vocalization. Journal of the Acoustical Society of America, 2021, 149, 4106-4118.	0.5	8
48	Inertagrams for a Variety of Semi-Occluded Vocal Tracts. Journal of Speech, Language, and Hearing Research, 2020, 63, 2589-2596.	0.7	8
49	Feasibility of measurement of a voice range profile with a semi-occluded vocal tract. Logopedics Phoniatrics Vocology, 2011, 36, 32-39.	0.5	7
50	A Newly Constituted National Center for Voice and Speech. Journal of Voice, 2022, 36, 149.	0.6	7
51	Where has all the power gone? Energy production and loss in vocalization. Speech Communication, 2018, 101, 26-33.	1.6	6
52	Vocal intensity in falsetto phonation of a countertenor: An analysis by synthesis approach. Journal of the Acoustical Society of America, 2001, 110, 1667-1676.	0.5	5
53	Simulation of Vocal Loudness Regulation with Lung Pressure, Vocal Fold Adduction, and Source-Airway Interaction. Journal of Voice, 2023, 37, 152-161.	0.6	5
54	The Effect of Single Harmonic Tuning on Vocal Loudness. Journal of Voice, 2021, 35, 832-837.	0.6	4

#	Article	IF	CITATIONS
55	The Rationale and History of Vocology. Voice and Speech Review, 2019, 13, 106-111.	0.3	3