
Zongmin Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9727774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell, 2020, 182, 73-84.e16.	13.5	1,139
2	Complete Genome Sequence of Yersinia pestis Strain 91001, an Isolate Avirulent to Humans. DNA Research, 2004, 11, 179-197.	1.5	241
3	Genetics of Metabolic Variations between Yersinia pestis Biovars and the Proposal of a New Biovar, microtus. Journal of Bacteriology, 2004, 186, 5147-5152.	1.0	200
4	Microarray Analysis of Temperatureâ€Induced Transcriptome of <i>Yersinia pestis</i> . Microbiology and Immunology, 2004, 48, 791-805.	0.7	106
5	Insight into Bacterial Virulence Mechanisms against Host Immune Response via the Yersinia pestis-Human Protein-Protein Interaction Network. Infection and Immunity, 2011, 79, 4413-4424.	1.0	52
6	Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress. Research in Microbiology, 2005, 156, 403-415.	1.0	50
7	Pseudogene accumulation might promote the adaptive microevolution of Yersinia pestis. Journal of Medical Microbiology, 2005, 54, 259-268.	0.7	35
8	Transcriptional profiling of a mice plague model: insights into interaction between <i>Yersinia pestis</i> and its host. Journal of Basic Microbiology, 2009, 49, 92-99.	1.8	34
9	Evolutionary selection of biofilm-mediated extended phenotypes in Yersinia pestis in response to a fluctuating environment. Nature Communications, 2020, 11, 281.	5.8	30
10	Cell Membrane Is Impaired, Accompanied by Enhanced Type III Secretion System Expression in Yersinia pestis Deficient in RovA Regulator. PLoS ONE, 2010, 5, e12840.	1.1	23
11	Protein Acetylation Mediated by YfiQ and CobB Is Involved in the Virulence and Stress Response of Yersinia pestis. Infection and Immunity, 2018, 86, .	1.0	21
12	Defining the genome content of live plague vaccines by use of whole-genome DNA microarray. Vaccine, 2004, 22, 3367-3374.	1.7	20
13	Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice. International Journal of Medical Microbiology, 2017, 307, 64-74.	1.5	20
14	Transcriptomic Response to Yersinia pestis: RIG-I Like Receptor Signaling Response Is Detrimental to the Host against Plague. Journal of Genetics and Genomics, 2014, 41, 379-396.	1.7	18
15	Gene expression profiling of Yersinia pestis with deletion of lcrG, a known negative regulator for Yop secretion of type III secretion system. International Journal of Medical Microbiology, 2009, 299, 355-366.	1.5	16
16	Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System. Applied and Environmental Microbiology, 2019, 85, .	1.4	16
17	Identification of Novel Protein-Protein Interactions of Yersinia pestis Type III Secretion System by Yeast Two Hybrid System. PLoS ONE, 2013, 8, e54121.	1.1	15
18	A live attenuated strain of Yersinia pestis ΔyscB provides protection against bubonic and pneumonic plagues in mouse model. Vaccine, 2013, 31, 2539-2542.	1.7	11

Zongmin Du

#	Article	IF	CITATIONS
19	TyrR, the regulator of aromatic amino acid metabolism, is required for mice infection of Yersinia pestis. Frontiers in Microbiology, 2015, 6, 110.	1.5	11
20	<i>Yersinia pestis</i> and host macrophages: immunodeficiency of mouse macrophages induced by YscW. Immunology, 2009, 128, e406-17.	2.0	10
21	Yersinia pestis YopK Inhibits Bacterial Adhesion to Host Cells by Binding to the Extracellular Matrix Adaptor Protein Matrilin-2. Infection and Immunity, 2017, 85, .	1.0	10
22	Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis. Communications Biology, 2021, 4, 1248.	2.0	10
23	Fpr2/CXCL1/2 Controls Rapid Neutrophil Infiltration to Inhibit Streptococcus agalactiae Infection. Frontiers in Immunology, 2021, 12, 786602.	2.2	8
24	Generation and Characterization of Anti-Filovirus Nucleoprotein Monoclonal Antibodies. Viruses, 2019, 11, 259.	1.5	5
25	<i>Yersinia pestis</i> -Induced Mitophagy That Balances Mitochondrial Homeostasis and mROS-Mediated Bactericidal Activity. Microbiology Spectrum, 2022, 10, .	1.2	5
26	Secretome and Comparative Proteomics of Yersinia pestis Identify Two Novel E3 Ubiquitin Ligases That Contribute to Plague Virulence. Molecular and Cellular Proteomics, 2021, 20, 100066.	2.5	3
27	Human Macrophages Clear the Biovar Microtus Strain of Yersinia pestis More Efficiently Than Murine Macrophages. Frontiers in Cellular and Infection Microbiology, 2019, 9, 111.	1.8	2