
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/972770/publications.pdf Version: 2024-02-01

REIKO INACI

#	Article	IF	CITATIONS
1	Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury. Cell Reports, 2019, 29, 1261-1273.e6.	2.9	302
2	Angiotensin II Receptor Antagonists and Angiotensin-Converting Enzyme Inhibitors Lower In Vitro the Formation of Advanced Glycation End Products: Biochemical Mechanisms. Journal of the American Society of Nephrology: JASN, 2002, 13, 2478-2487.	3.0	290
3	Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney International, 2006, 70, 1447-1455.	2.6	174
4	Proteostasis in endoplasmic reticulum—new mechanisms in kidney disease. Nature Reviews Nephrology, 2014, 10, 369-378.	4.1	170
5	Anti-Hypertensive Agents Inhibit In Vivo the Formation of Advanced Glycation End Products and Improve Renal Damage in a Type 2 Diabetic Nephropathy Rat Model. Journal of the American Society of Nephrology: JASN, 2003, 14, 1212-1222.	3.0	165
6	Endoplasmic Reticulum Stress in the Kidney as a Novel Mediator of Kidney Injury. Nephron Experimental Nephrology, 2009, 112, e1-e9.	2.4	162
7	Endoplasmic reticulum stress as a progression factor for kidney injury. Current Opinion in Pharmacology, 2010, 10, 156-165.	1.7	158
8	Mitochondria: a therapeutic target in acute kidney injury. Nephrology Dialysis Transplantation, 2016, 31, 1062-1069.	0.4	152
9	Hypoperfusion of Peritubular Capillaries Induces Chronic Hypoxia before Progression of Tubulointerstitial Injury in a Progressive Model of Rat Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2004, 15, 1574-1581.	3.0	147
10	Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Laboratory Investigation, 2011, 91, 1564-1571.	1.7	132
11	Sodium–glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney International, 2018, 94, 912-925.	2.6	123
12	Protective Role of Hypoxia-Inducible Factor-2α against Ischemic Damage and Oxidative Stress in the Kidney. Journal of the American Society of Nephrology: JASN, 2007, 18, 1218-1226.	3.0	119
13	Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney International, 2005, 68, 2714-2725.	2.6	110
14	ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. Journal of Clinical Investigation, 2019, 129, 3387-3400.	3.9	103
15	Preconditioning with Endoplasmic Reticulum Stress Ameliorates Mesangioproliferative Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2008, 19, 915-922.	3.0	99
16	Downregulation of miR-205 Modulates Cell Susceptibility to Oxidative and Endoplasmic Reticulum Stresses in Renal Tubular Cells. PLoS ONE, 2012, 7, e41462.	1.1	99
17	Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease. Molecular and Cellular Biology, 2017, 37, .	1.1	98
18	Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney International, 2005, 68, 2639-2650.	2.6	96

#	Article	IF	CITATIONS
19	Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients, 2019, 11, 1664.	1.7	96
20	Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrology Dialysis Transplantation, 2009, 24, 2665-2672.	0.4	92
21	Glyoxalase I deficiency is associated with an unusual level of advanced glycation end products in a hemodialysis patient. Kidney International, 2001, 60, 2351-2359.	2.6	91
22	Hypoxia and Expression of Hypoxia-Inducible Factor in the Aging Kidney. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 795-805.	1.7	88
23	ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis. Kidney International, 2019, 95, 577-589.	2.6	86
24	A Severe Diabetic Nephropathy Model With Early Development of Nodule-Like Lesions Induced by Megsin Overexpression in RAGE/iNOS Transgenic Mice. Diabetes, 2006, 55, 356-366.	0.3	83
25	Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. American Journal of Physiology - Renal Physiology, 2009, 296, F912-F921.	1.3	81
26	Hypoxia and Hypoxia-Inducible Factor in Renal Disease. Nephron Experimental Nephrology, 2008, 110, e1-e7.	2.4	79
27	Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress. American Journal of Physiology - Renal Physiology, 2010, 299, F568-F576.	1.3	75
28	Prolyl Hydroxylase Domain Inhibitor Protects against Metabolic Disorders and Associated Kidney Disease in Obese Type 2 Diabetic Mice. Journal of the American Society of Nephrology: JASN, 2020, 31, 560-577.	3.0	72
29	In a type 2 diabetic nephropathy rat model, the improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy. Nephrology Dialysis Transplantation, 2005, 20, 2661-2669.	0.4	70
30	SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nature Communications, 2019, 10, 2692.	5.8	66
31	Hypoxia-induced apoptosis in cultured glomerular endothelial cells: Involvement of mitochondrial pathways. Kidney International, 2003, 64, 2020-2032.	2.6	61
32	Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney. Diabetes, 2017, 66, 2339-2350.	0.3	61
33	<scp>G</scp> lyoxalase <scp>I</scp> reduces glycative and oxidative stress and prevents ageâ€related endothelial dysfunction through modulation of endothelial nitric oxide synthase phosphorylation. Aging Cell, 2014, 13, 519-528.	3.0	56
34	Sirtuin1 Maintains Actin Cytoskeleton by Deacetylation of Cortactin in Injured Podocytes. Journal of the American Society of Nephrology: JASN, 2015, 26, 1939-1959.	3.0	56
35	Stress Signal Network between Hypoxia and ER Stress in Chronic Kidney Disease. Frontiers in Physiology, 2017, 8, 74.	1.3	54
36	Organelle crosstalk in the kidney. Kidney International, 2019, 95, 1318-1325.	2.6	53

#	Article	IF	CITATIONS
37	Cytoglobin, a Novel Member of the Globin Family, Protects Kidney Fibroblasts against Oxidative Stress under Ischemic Conditions. American Journal of Pathology, 2011, 178, 128-139.	1.9	50
38	Glomerular diseases: genetic causes and future therapeutics. Nature Reviews Nephrology, 2010, 6, 539-554.	4.1	49
39	Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 1097-1105.	0.9	48
40	Inhibitors of Advanced Glycation and Endoplasmic Reticulum Stress. Methods in Enzymology, 2011, 491, 361-380.	0.4	44
41	Cytoglobin, a novel globin, plays an antifibrotic role in the kidney. American Journal of Physiology - Renal Physiology, 2010, 299, F1120-F1133.	1.3	42
42	Glyoxalase I Retards Renal Senescence. American Journal of Pathology, 2011, 179, 2810-2821.	1.9	41
43	Effect of AST-120 in Chronic Kidney Disease Treatment: Still a Controversy?. Nephron, 2017, 135, 201-206.	0.9	41
44	Endoplasmic reticulum stress signal impairs erythropoietin production: a role for ATF4. American Journal of Physiology - Cell Physiology, 2013, 304, C342-C353.	2.1	39
45	D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation. Scientific Reports, 2017, 7, 11168.	1.6	38
46	Chronic hypoxia aggravates renal injury via suppression of Cu/Zn-SOD: a proteomic analysis. American Journal of Physiology - Renal Physiology, 2008, 294, F62-F72.	1.3	37
47	Vascular adhesion protein-1 enhances neutrophil infiltration by generation of hydrogen peroxide in renal ischemia/reperfusion injury. Kidney International, 2017, 92, 154-164.	2.6	37
48	Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney International, 2019, 95, 563-576.	2.6	37
49	Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney International, 2022, 101, 510-526.	2.6	36
50	Efficient in vitro lowering of carbonyl stress by the glyoxalase system in conventional glucose peritoneal dialysis fluid. Kidney International, 2002, 62, 679-687.	2.6	34
51	Dietary Metabolites and Chronic Kidney Disease. Nutrients, 2017, 9, 358.	1.7	32
52	Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Frontiers in Physiology, 2020, 11, 565023.	1.3	32
53	Palmitate deranges erythropoietin production via transcription factor ATF4 activation of unfolded protein response. Kidney International, 2018, 94, 536-550.	2.6	30
54	Epigenetic Regulation Through SIRT1 in Podocytes. Current Hypertension Reviews, 2016, 12, 89-94.	0.5	30

#	Article	IF	CITATIONS
55	Novel Serpinopathy in Rat Kidney and Pancreas Induced by Overexpression of Megsin. Journal of the American Society of Nephrology: JASN, 2005, 16, 1339-1349.	3.0	28
56	Uremic Sarcopenia: Clinical Evidence and Basic Experimental Approach. Nutrients, 2020, 12, 1814.	1.7	28
57	Metabolic Changes and Oxidative Stress in Diabetic Kidney Disease. Antioxidants, 2021, 10, 1143.	2.2	27
58	RAGE and glyoxalase in kidney disease. Glycoconjugate Journal, 2016, 33, 619-626.	1.4	26
59	Pathophysiological Role of Organelle Stress/Crosstalk in AKI-to-CKD Transition. Seminars in Nephrology, 2019, 39, 581-588.	0.6	26
60	Adenosine A ₂ a receptor stimulation prevents proteinuria in diabetic rats by promoting an anti-inflammatory phenotype without affecting oxidative stress. Acta Physiologica, 2015, 214, 311-318.	1.8	25
61	Cloning and Characterization of a Novel Subunit of Protein Serine/Threonine Phosphatase 4 from Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2001, 12, 2601-2608.	3.0	21
62	Glycative stress and glyoxalase in kidney disease and aging. Biochemical Society Transactions, 2014, 42, 457-460.	1.6	20
63	Activation of Sympathetic Signaling in Macrophages Blocks Systemic Inflammation and Protects against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2021, 32, 1599-1615.	3.0	17
64	The Role of Glyoxalase System in Renal Hypoxia. Advances in Experimental Medicine and Biology, 2010, 662, 49-55.	0.8	16
65	Protection of Endothelial Cells by Dextran Sulfate in Rats with Thrombotic Microangiopathy. Journal of the American Society of Nephrology: JASN, 2005, 16, 2997-3005.	3.0	14
66	Glycative Stress and Its Defense Machinery Glyoxalase 1 in Renal Pathogenesis. International Journal of Molecular Sciences, 2017, 18, 174.	1.8	14
67	Organelle Stress and Crosstalk in Kidney Disease. Kidney360, 2020, 1, 1157-1164.	0.9	13
68	Vagus nerve stimulation even after injury ameliorates cisplatin-induced nephropathy via reducing macrophage infiltration. Scientific Reports, 2020, 10, 9472.	1.6	12
69	Decreased IFT88 expression with primary cilia shortening causes mitochondrial dysfunction in cisplatin-induced tubular injury. American Journal of Physiology - Renal Physiology, 2021, 321, F278-F292.	1.3	11
70	Pathophysiology and therapeutics of premature ageing in chronic kidney disease, with a focus on glycative stress. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 70-77.	0.9	10
71	Harnessing Metabolomics to Describe the Pathophysiology Underlying Progression in Diabetic Kidney Disease. Current Diabetes Reports, 2021, 21, 21.	1.7	10
72	β2-adrenergic receptor agonist counteracts skeletal muscle atrophy and oxidative stress in uremic mice. Scientific Reports, 2021, 11, 9130.	1.6	9

#	Article	IF	CITATIONS
73	Neuroimmune interactions and kidney disease. Kidney Research and Clinical Practice, 2019, 38, 282-294.	0.9	9
74	Foreseeing the future of glomerular disease through slits: miR-NPNT axis. Kidney International, 2017, 92, 782-784.	2.6	7
75	The gut–kidney connection in advanced chronic kidney disease. Kidney Research and Clinical Practice, 2015, 34, 191-193.	0.9	6
76	Organelle Stress and Metabolic Derangement in Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 1723.	1.8	6
77	A simple and effective preparation of quercetin pentamethyl ether from quercetin. Beilstein Journal of Organic Chemistry, 2018, 14, 3112-3121.	1.3	5
78	Intracellular calcium response of primary cilia of tubular cells to modulated shear stress under oxidative stress. Biomicrofluidics, 2020, 14, 044102.	1.2	5
79	Oxidative and Endoplasmic Reticulum (ER) Stress in Tissue Fibrosis. Current Pathobiology Reports, 2013, 1, 283-289.	1.6	4
80	The Implication of Organelle Cross Talk in AKI. Nephron, 2020, 144, 634-637.	0.9	4
81	Organelle stress and glycation in kidney disease. Glycoconjugate Journal, 2021, 38, 341-346.	1.4	4
82	Activation of α7 nicotinic acetylcholine receptors attenuates monocyte–endothelial adhesion through FUT7 inhibition. Biochemical and Biophysical Research Communications, 2022, 590, 89-96.	1.0	4
83	Endoplasmic Reticulum Stress as a Target of Therapy Against Oxidative Stress and Hypoxia. , 2011, , 657-672.		3
84	The subtle long-lasting burden of mitochondrial DNA variants. Nature Reviews Nephrology, 2021, , .	4.1	1
85	Improvement of the Metabolic Syndrome and Renal Injury by Low-Calorie Diet Is Associated with Renal AGE Reduction in Rat Type 2 Diabetic Nephropathy. Annals of the New York Academy of Sciences, 2005, 1043, 915-915.	1.8	0
86	In Vitroandin VivoEvidence for the AGE- Inhibitory Property of Antihypertensive Agents. Annals of the New York Academy of Sciences, 2005, 1043, 943-943.	1.8	0
87	D-serine as a Novel Uremic Toxin. , 2020, , 115-129.		0