
Tanja Vollmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/972664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2-antibody response in health care workers after vaccination or natural infection in a longitudinal observational study. Vaccine, 2022, 40, 206-212.	3.8	20
2	Prospective Sero-epidemiological Evaluation of SARS-CoV-2 among Health Care Workers in a German Secondary Care Hospital. International Journal of Infectious Diseases, 2021, 102, 136-143.	3.3	28
3	Half-Year Longitudinal Seroprevalence of SARS-CoV-2-Antibodies and Rule Compliance in German Hospital Employees. International Journal of Environmental Research and Public Health, 2021, 18, 10972.	2.6	5
4	Extension of the Storage Period of Platelet Concentrates in Germany to 5 Days by Bacterial Testing: Is it Worth the Effort?. Transfusion Medicine and Hemotherapy, 2019, 46, 111-113.	1.6	1
5	Hepatitis E virus blood donor NAT screening: as much as possible or as much as needed?. Transfusion, 2019, 59, 612-622.	1.6	22
6	Streptococcus gallolyticus subsp. gallolyticus pathogenesis: current state of play. Future Microbiology, 2018, 13, 731-735.	2.0	3
7	Transfusion-Transmitted Hepatitis E: NAT Screening of Blood Donations and Infectious Dose. Frontiers in Medicine, 2018, 5, 5.	2.6	58
8	Biofilm formation and transcriptome analysis of Streptococcus gallolyticus subsp. gallolyticus in response to lysozyme. PLoS ONE, 2018, 13, e0191705.	2.5	9
9	Late sampling for automated culture to extend the platelet shelf life to 5 days in Germany. Transfusion, 2018, 58, 1654-1664.	1.6	5
10	Complete Genome Sequence of the Streptococcus gallolyticus subsp. <i>gallolyticus</i> Strain DSM 16831. Genome Announcements, 2017, 5, .	0.8	3
11	Case-control study: Determination of potential risk factors for the colonization of healthy volunteers with Streptococcus gallolyticus subsp. gallolyticus. PLoS ONE, 2017, 12, e0176515.	2.5	23
12	Transcriptome analysis of Streptococcus gallolyticus subsp. gallolyticus in interaction with THP-1 macrophage-like cells. PLoS ONE, 2017, 12, e0180044.	2.5	7
13	Strain-dependent interactions of Streptococcus gallolyticus subsp. gallolyticus with human blood cells. BMC Microbiology, 2017, 17, 210.	3.3	4
14	Hepatitis E in blood donors: investigation of the natural course of asymptomatic infection, Germany, 2011. Eurosurveillance, 2016, 21, .	7.0	44
15	Knowledge Is Safety: The Time Is Ripe for Hepatitis E Virus Blood Donor Screening. Transfusion Medicine and Hemotherapy, 2016, 43, 425-427.	1.6	10
16	Monitoring of Anti-Hepatitis E Virus Antibody Seroconversion in Asymptomatically Infected Blood Donors: Systematic Comparison of Nine Commercial Anti-HEV IgM and IgG Assays. Viruses, 2016, 8, 232.	3.3	45
17	Establishment of a proficiency panel for an external quality assessment programme for the detection of bacterial contamination in platelet concentrates using rapid and cultural detection methods. Vox Sanguinis, 2016, 110, 336-343.	1.5	2
18	Hepatitis E. Vox Sanguinis, 2016, 110, 93-103.	1.5	48

TANJA VOLLMER

#	Article	IF	CITATIONS
19	Implementation of NAT Screening for West Nile Virus and Experience with Seasonal Testing in Germany. Transfusion Medicine and Hemotherapy, 2016, 43, 28-36.	1.6	5
20	Bench Test for the Detection of Bacterial Contamination in Platelet Concentrates Using Rapid and Cultural Detection Methods with a Standardized Proficiency Panel. Transfusion Medicine and Hemotherapy, 2015, 42, 220-225.	1.6	5
21	Systematic Evaluation of Different Nucleic Acid Amplification Assays for Cytomegalovirus Detection: Feasibility of Blood Donor Screening. Journal of Clinical Microbiology, 2015, 53, 3219-3225.	3.9	8
22	Potential Transmission Pathways of Streptococcus gallolyticus subsp. gallolyticus. PLoS ONE, 2015, 10, e0126507.	2.5	46
23	Genetic Variants in Genes of the Inflammatory Response in Association with Infective Endocarditis. PLoS ONE, 2014, 9, e110151.	2.5	20
24	Novel flow cytometric screening method for bacterial contamination of red blood cells: a proofâ€ofâ€principle evaluation. Transfusion, 2014, 54, 900-909.	1.6	6
25	Comparison of Real-Time PCR and Antigen Assays for Detection of Hepatitis E Virus in Blood Donors. Journal of Clinical Microbiology, 2014, 52, 2150-2156.	3.9	51
26	Diagnostic Methods for Platelet Bacteria Screening: Current Status and Developments. Transfusion Medicine and Hemotherapy, 2014, 41, 19-27.	1.6	44
27	Bacterial screening of platelet concentrates on day 2 and 3 with flow cytometry: the optimal sampling time point?. Blood Transfusion, 2014, 12, 388-95.	0.4	7
28	Detection of Bacterial Contamination in Platelet Concentrates Using Flow Cytometry and Real-Time PCR Methods. Methods in Molecular Biology, 2013, 943, 91-103.	0.9	9
29	Fast and sample cleanup-free measurement of nicotine and cotinine by stable isotope dilution ultra-performance liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2012, 67-68, 137-143.	2.8	14
30	Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay. BMC Infectious Diseases, 2012, 12, 163.	2.9	54
31	Novel Approach for Detection of Hepatitis E Virus Infection in German Blood Donors. Journal of Clinical Microbiology, 2012, 50, 2708-2713.	3.9	143
32	Complete genome and comparative analysis of Streptococcus gallolyticus subsp. gallolyticus, an emerging pathogen of infective endocarditis. BMC Genomics, 2011, 12, 400.	2.8	41
33	Interactions between endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates and human endothelial cells. BMC Microbiology, 2010, 10, 78.	3.3	43
34	The Pan Genera Detection Immunoassay: a Novel Point-of-Issue Method for Detection of Bacterial Contamination in Platelet Concentrates. Journal of Clinical Microbiology, 2010, 48, 3475-3481.	3.9	36
35	23S rDNA real-time polymerase chain reaction of heart valves: a decisive tool in the diagnosis of infective endocarditis. European Heart Journal, 2010, 31, 1105-1113.	2.2	47
36	Novel Flow Cytometry–Based Screening for Bacterial Contamination of Donor Platelet Preparations Compared with Other Rapid Screening Methods. Clinical Chemistry, 2009, 55, 1492-1502.	3.2	54

TANJA VOLLMER

#	Article	IF	CITATIONS
37	Lipopolysaccharide-Binding Protein: A New Biomarker for Infectious Endocarditis?. Clinical Chemistry, 2009, 55, 295-304.	3.2	23
38	Lipopolysaccharide-binding protein (LBP) gene polymorphisms: Rapid genotyping by real-time PCR and association with infective endocarditis. Clinical Biochemistry, 2009, 42, 1413-1419.	1.9	12
39	Broad-range real-time PCR assay for the rapid identification of cell-line contaminants and clinically important mollicute species. International Journal of Medical Microbiology, 2009, 299, 291-300.	3.6	37
40	Evaluation of Novel Broad-Range Real-Time PCR Assay for Rapid Detection of Human Pathogenic Fungi in Various Clinical Specimens. Journal of Clinical Microbiology, 2008, 46, 1919-1926.	3.9	85
41	Culture-negative infectious endocarditis caused by Bartonella spp.: 2 case reports and a review of the literature. Diagnostic Microbiology and Infectious Disease, 2008, 61, 476-483.	1.8	22