
Elliot Stieglitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/972624/publications.pdf Version: 2024-02-01

FILIOT STIECUTZ

#	Article	IF	CITATIONS
1	Successful treatment and integrated genomic analysis of an infant with <i>FIP1L1-RARA</i> fusion–associated myeloid neoplasm. Blood Advances, 2022, 6, 1137-1142.	5.2	4
2	Molecular and phenotypic diversity of <i>CBL</i> -mutated juvenile myelomonocytic leukemia. Haematologica, 2022, 107, 178-186.	3.5	25
3	Therapyâ€related myeloid neoplasms resembling juvenile myelomonocytic leukemia: a case series and review of the literature. Pediatric Blood and Cancer, 2022, 69, e29499.	1.5	1
4	Inhibition of BTK and PI3KÎ' impairs the development of human JMML stem and progenitor cells. Molecular Therapy, 2022, 30, 2505-2521.	8.2	2
5	Cytomorphologic features of pediatric-type follicular lymphoma on fine needle aspiration biopsy: case series and a review of the literature. Journal of the American Society of Cytopathology, 2022, 11, 281-294.	0.5	1
6	MEK inhibitors for neurofibromatosis type 1 manifestations: Clinical evidence and consensus. Neuro-Oncology, 2022, 24, 1845-1856.	1.2	30
7	Clinical utilization of blinatumomab and inotuzumab immunotherapy in children with relapsed or refractory Bâ€acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2021, 68, e28718.	1.5	30
8	Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nature Communications, 2021, 12, 1334.	12.8	103
9	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A Report from the LEAP Consortium. Cancer Discovery, 2021, 11, 1424-1439.	9.4	16
10	Surface Proteomics Reveals CD72 as a Target for <i>In Vitro</i> –Evolved Nanobody-Based CAR-T Cells in <i>KMT2A/MLL1</i> -Rearranged B-ALL. Cancer Discovery, 2021, 11, 2032-2049.	9.4	37
11	Exploring the genetic and epigenetic origins of juvenile myelomonocytic leukemia using newborn screening samples. Leukemia, 2021, , .	7.2	9
12	Nf1 and Sh2b3 mutations cooperate in vivo in a mouse model of juvenile myelomonocytic leukemia. Blood Advances, 2021, 5, 3587-3591.	5.2	1
13	Juvenile myelomonocytic leukemia in the molecular era: a clinician's guide to diagnosis, risk stratification, and treatment. Blood Advances, 2021, 5, 4783-4793.	5.2	13
14	JMML tumor cells disrupt normal hematopoietic stem cells by imposing inflammatory stress through overproduction of IL-1 $\hat{1}^2$. Blood Advances, 2021, , .	5.2	3
15	Simple and robust methylation test for risk stratification of patients with juvenile myelomonocytic leukemia. Blood Advances, 2021, 5, 5507-5518.	5.2	4
16	Targeting the Ras pathway in pediatric hematologic malignancies. Current Opinion in Pediatrics, 2021, 33, 49-58.	2.0	5
17	NUP98-NSD1 Driven MDS/MPN in Childhood Masquerading as JMML. Journal of Pediatric Hematology/Oncology, 2021, 43, e808-e811.	0.6	5
18	International Consensus Definition of DNA Methylation Subgroups in Juvenile Myelomonocytic Leukemia. Clinical Cancer Research, 2021, 27, 158-168.	7.0	35

ELLIOT STIEGLITZ

#	Article	IF	CITATIONS
19	Allosteric SHP2 Inhibitor RMC4550 Synergizes with Venetoclax in FLT3 and KIT Mutant Acute Myeloid Leukemia. Blood, 2021, 138, 2231-2231.	1.4	3
20	Targeting M2-Tumor Associated Macrophages By Arginase-1 and PD-L1 in Regulating Juvenile Myelomonocytic Leukemia (JMML) Development and Relapse. Blood, 2021, 138, 1471-1471.	1.4	2
21	MEK Inhibition Demonstrates Activity in Relapsed, Refractory Patients with Juvenile Myelomonocytic Leukemia: Results from COG Study ADVL1521. Blood, 2021, 138, 3679-3679.	1.4	4
22	Fusion driven JMML: a novel CCDC88C–FLT3 fusion responsive to sorafenib identified by RNA sequencing. Leukemia, 2020, 34, 662-666.	7.2	27
23	The impact of total body irradiationâ€based regimens on outcomes in children and young adults with acute lymphoblastic leukemia undergoing allogeneic hematopoietic stem cell transplantation. Pediatric Blood and Cancer, 2020, 67, e28079.	1.5	22
24	Complete Response to PD-1 Inhibition in an Adolescent With Relapsed Clear Cell Adenocarcinoma of the Cervix Predicted by Neoepitope Burden and APOBEC Signature. JCO Precision Oncology, 2020, 4, 1321-1332.	3.0	5
25	Low toxicity and favorable overall survival in relapsed/refractory B-ALL following CAR T cells and CD34-selected T-cell depleted allogeneic hematopoietic cell transplant. Bone Marrow Transplantation, 2020, 55, 2160-2169.	2.4	11
26	Distinct Genetic Pathways Define Leukemia Predisposition Versus Adaptive Clonal Hematopoiesis in Shwachman-Diamond Syndrome. Blood, 2020, 136, 35-36.	1.4	0
27	Genetic Alterations Precede DNA Methylation Changes in Juvenile Myelomonocytic Leukemia. Blood, 2020, 136, 19-20.	1.4	0
28	Molecular assessment of pretransplant chemotherapy in the treatment of juvenile myelomonocytic leukemia. Pediatric Blood and Cancer, 2019, 66, e27948.	1.5	13
29	Activating Mutations of RRAS2 Are a Rare Cause of Noonan Syndrome. American Journal of Human Genetics, 2019, 104, 1223-1232.	6.2	43
30	Predisposing germline mutations in high hyperdiploid acute lymphoblastic leukemia in children. Genes Chromosomes and Cancer, 2019, 58, 723-730.	2.8	17
31	Genomic subtyping and therapeutic targeting of acute erythroleukemia. Nature Genetics, 2019, 51, 694-704.	21.4	97
32	Precision cancer monitoring using a novel, fully integrated, microfluidic array partitioning digital PCR platform. Scientific Reports, 2019, 9, 19606.	3.3	31
33	Downregulating Notch counteracts KrasG12D-induced ERK activation and oxidative phosphorylation in myeloproliferative neoplasm. Leukemia, 2019, 33, 671-685.	7.2	12
34	In Vitro-Selected Nanobody-Based Cellular Therapy Targeting CD72 for Treatment of Refractory B-Cell Malignancies. Blood, 2019, 134, 1337-1337.	1.4	8
35	DNA Methylation As a Biomarker of Outcome in JMML: An International Effort Towards Clinical Implementation. Blood, 2019, 134, 1693-1693.	1.4	0
36	ABVD Without Radiation for Newly Diagnosed Pediatric and Young Adult Patients With Hodgkin Lymphoma: A Single Center Retrospective Analysis of 28 Consecutive Patients. Journal of Pediatric Hematology/Oncology, 2018, 40, 290-294.	0.6	9

ELLIOT STIEGLITZ

#	Article	IF	CITATIONS
37	Disease burden and conditioning regimens in ASCT1221, a randomized phase II trial in children with juvenile myelomonocytic leukemia: A Children's Oncology Group study. Pediatric Blood and Cancer, 2018, 65, e27034.	1.5	26
38	DNA Methylation Subgroups in Juvenile Myelomonocytic Leukemia: An International Collaborative Analysis and Development of a Common Diagnostic Platform. Blood, 2018, 132, 3093-3093.	1.4	2
39	Phase I Study of the Selinexor in Relapsed/Refractory Childhood Acute Leukemia. Blood, 2018, 132, 1405-1405.	1.4	5
40	Germline GAB2 Mutations in Childhood Acute Lymphoblastic Leukemia. Blood, 2018, 132, 388-388.	1.4	0
41	Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood, 2017, 130, 397-407.	1.4	112
42	International Interlaboratory Digital PCR Study Demonstrating High Reproducibility for the Measurement of a Rare Sequence Variant. Analytical Chemistry, 2017, 89, 1724-1733.	6.5	54
43	Dysregulation of the transcription factor runx1 in juvenile myelomonocytic leukemia. Experimental Hematology, 2017, 53, S51.	0.4	0
44	Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nature Communications, 2017, 8, 2127.	12.8	75
45	A Risk Stratified Treatment Algorithm for Patients with Juvenile Myelomonocytic Leukemia. , 2017, 14, .		Ο
46	Abstract 26: RUNX1 as a transcriptional target of activated Shp2 (PTPN11) in juvenile myelomonocytic leukemia. , 2017, , .		0
47	Pediatric MDS: GATA screen the germline. Blood, 2016, 127, 1377-1378.	1.4	5
48	Germline <i>RRAS2</i> mutations are not associated with Noonan syndrome. Journal of Medical Genetics, 2016, 53, 728-728.	3.2	6
49	Comprehensive Inflammatory Cytokine Profiling Identifies IL-8/CXCL8 As Elevated, Associated with Proliferative Features, and Independently Prognostic in Chronic Myelomonocytic Leukemia (CMML). Blood, 2016, 128, 109-109.	1.4	2
50	The Genomic Landscape of Childhood and Adult Acute Erythroid Leukemia. Blood, 2016, 128, 39-39.	1.4	2
51	RUNX1 Is a Candidate Transcriptional Effector in Juvenile Myelomonocytic Leukemia. Blood, 2016, 128, 2699-2699.	1.4	0
52	Phase II/III trial of a pre-transplant farnesyl transferase inhibitor in juvenile myelomonocytic leukemia: A report from the Children's Oncology Group. Pediatric Blood and Cancer, 2015, 62, 629-636.	1.5	43
53	Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood, 2015, 125, 516-524.	1.4	69
54	The genomic landscape of juvenile myelomonocytic leukemia. Nature Genetics, 2015, 47, 1326-1333.	21.4	233

ELLIOT STIEGLITZ

#	Article	IF	CITATIONS
55	Mutations in GATA2 are rare in juvenile myelomonocytic leukemia. Blood, 2014, 123, 1426-1427.	1.4	12
56	Pulmonary Coccidiomycosis Masquerading as Refractory Metastatic Ewing Sarcoma. Journal of Pediatric Hematology/Oncology, 2014, 36, e57-e60.	0.6	6
57	Subclonal Mutations in SETBP1 Predict Relapse in Juvenile Myelomonocytic Leukemia. Blood, 2014, 124, 410-410.	1.4	Ο
58	Genetic predispositions to childhood leukemia. Therapeutic Advances in Hematology, 2013, 4, 270-290.	2.5	68
59	Mutations In GATA2 Are Rare In Juvenile Myelomonocytic Leukemia. Blood, 2013, 122, 1526-1526.	1.4	0