
David C Page

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9726018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A gene deriving from the ancestral sex chromosomes was lost from the X and retained on the Y chromosome in eutherian mammals. BMC Biology, 2022, 20, .	1.7	2
2	Germ cell determination and the developmental origin of germ cell tumors. Development (Cambridge), 2021, 148, .	1.2	16
3	GC-biased gene conversion in X-chromosome palindromes conserved in human, chimpanzee, and rhesus macaque. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	2
4	Large palindromes on the primate X Chromosome are preserved by natural selection. Genome Research, 2021, 31, 1337-1352.	2.4	10
5	Dosage-sensitive functions in embryonic development drove the survival of genes on sex-specific chromosomes in snakes, birds, and mammals. Genome Research, 2021, 31, 198-210.	2.4	28
6	Dynamic and regulated TAF gene expression during mouse embryonic germ cell development. PLoS Genetics, 2020, 16, e1008515.	1.5	22
7	GCNA Interacts with Spartan and Topoisomerase II to Regulate Genome Stability. Developmental Cell, 2020, 52, 53-68.e6.	3.1	41
8	Sequence analysis in <i>Bos taurus</i> reveals pervasiveness of X–Y arms races in mammalian lineages. Genome Research, 2020, 30, 1716-1726.	2.4	29
9	Quantitative analysis of Y-Chromosome gene expression across 36 human tissues. Genome Research, 2020, 30, 860-873.	2.4	56
10	DAZL mediates a broad translational program regulating expansion and differentiation of spermatogonial progenitors. ELife, 2020, 9, .	2.8	28
11	Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science, 2019, 365, .	6.0	152
12	Locating and Characterizing a Transgene Integration Site by Nanopore Sequencing. G3: Genes, Genomes, Genetics, 2019, 9, 1481-1486.	0.8	26
13	Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nature Genetics, 2019, 51, 705-715.	9.4	145
14	A strategic research alliance: Turner syndrome and sex differences. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2019, 181, 92-100.	0.7	12
15	Retinoic Acid and Germ Cell Development in the Ovary and Testis. Biomolecules, 2019, 9, 775.	1.8	68
16	Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25677-25687.	3.3	82
17	Intergenerational epigenetic inheritance of cancer susceptibility in mammals. ELife, 2019, 8, .	2.8	43
18	Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. ELife, 2019, 8, .	2.8	78

#	Article	IF	CITATIONS
19	Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. Genome Research, 2018, 28, 474-483.	2.4	34
20	Cost-effective high-throughput single-haplotype iterative mapping and sequencing for complex genomic structures. Nature Protocols, 2018, 13, 787-809.	5.5	12
21	Selection Has Countered High Mutability to Preserve the Ancestral Copy Number of Y Chromosome Amplicons in Diverse Human Lineages. American Journal of Human Genetics, 2018, 103, 261-275.	2.6	37
22	Isolating mitotic and meiotic germ cells from male mice by developmental synchronization, staging, and sorting. Developmental Biology, 2018, 443, 19-34.	0.9	29
23	Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nature Genetics, 2017, 49, 387-394.	9.4	147
24	Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nature Cell Biology, 2017, 19, 68-75.	4.6	207
25	Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10132-E10141.	3.3	96
26	Meioc maintains an extended meiotic prophase I in mice. PLoS Genetics, 2017, 13, e1006704.	1.5	103
27	The history of the Y chromosome in man. Nature Genetics, 2016, 48, 588-589.	9.4	15
28	Parallel evolution of male germline epigenetic poising and somatic development in animals. Nature Genetics, 2016, 48, 888-894.	9.4	92
29	A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes. ELife, 2016, 5, .	2.8	56
30	Sex chromosome-to-autosome transposition events counter Y-chromosome gene loss in mammals. Genome Biology, 2015, 16, 104.	3.8	58
31	Licensing of Primordial Germ Cells for Gametogenesis Depends on Genital Ridge Signaling. PLoS Genetics, 2015, 11, e1005019.	1.5	48
32	Periodic retinoic acid–STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2347-56.	3.3	177
33	A Gene Regulatory Program for Meiotic Prophase in the Fetal Ovary. PLoS Genetics, 2015, 11, e1005531.	1.5	93
34	Retinoic Acid Activates Two Pathways Required for Meiosis in Mice. PLoS Genetics, 2014, 10, e1004541.	1.5	129
35	Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature, 2014, 508, 494-499.	13.7	546
36	Sequencing the Mouse Y Chromosome Reveals Convergent Gene Acquisition and Amplification on Both Sex Chromosomes. Cell, 2014, 159, 800-813.	13.5	291

#	Article	IF	CITATIONS
37	Poised chromatin in the mammalian germ line. Development (Cambridge), 2014, 141, 3619-3626.	1.2	70
38	Independent specialization of the human and mouse X chromosomes for the male germ line. Nature Genetics, 2013, 45, 1083-1087.	9.4	164
39	Intrachromosomal homologous recombination between inverted amplicons on opposing Y-chromosome arms. Genomics, 2013, 102, 257-264.	1.3	24
40	Oocyte differentiation is genetically dissociable from meiosis in mice. Nature Genetics, 2013, 45, 877-883.	9.4	92
41	TALEN-mediated editing of the mouse Y chromosome. Nature Biotechnology, 2013, 31, 530-532.	9.4	119
42	Gata4 Is Required for Formation of the Genital Ridge in Mice. PLoS Genetics, 2013, 9, e1003629.	1.5	164
43	Tumor suppressor gene <i>Rb</i> is required for self-renewal of spermatogonial stem cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12685-12690.	3.3	66
44	A set of genes critical to development is epigenetically poised in mouse germ cells from fetal stages through completion of meiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16061-16066.	3.3	141
45	Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature, 2012, 483, 82-86.	13.7	245
46	Sequencing of rhesus macaque Y chromosome clarifies origins and evolution of the <i>DAZ</i> (<i>Deleted in AZoospermia</i>) genes. BioEssays, 2012, 34, 1035-1044.	1.2	22
47	AZFc Deletions and Spermatogenic Failure: A Population-Based Survey of 20,000 Y Chromosomes. American Journal of Human Genetics, 2012, 91, 890-896.	2.6	113
48	Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development (Cambridge), 2012, 139, 1577-1586.	1.2	52
49	<i>Mir-290–295</i> deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14163-14168.	3.3	138
50	Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7443-7448.	3.3	172
51	Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature, 2010, 463, 536-539.	13.7	381
52	Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature, 2010, 466, 612-616.	13.7	210
53	Isodicentric Y Chromosomes and Sex Disorders as Byproducts of Homologous Recombination that Maintains Palindromes. Cell, 2009, 138, 855-869.	13.5	232
54	The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nature Genetics, 2008, 40, 794-799.	9.4	289

#	Article	IF	CITATIONS
55	Germ Cell-Intrinsic and -Extrinsic Factors Govern Meiotic Initiation in Mouse Embryos. Science, 2008, 322, 1685-1687.	6.0	237
56	<i>Stra8</i> and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14976-14980.	3.3	527
57	MSY Breakpoint Mapper, a database of sequence-tagged sites useful in defining naturally occurring deletions in the human Y chromosome. Nucleic Acids Research, 2007, 36, D809-D814.	6.5	24
58	Abnormal Sperm in Mice Lacking the Taf7l Gene. Molecular and Cellular Biology, 2007, 27, 2582-2589.	1.1	114
59	High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nature Genetics, 2006, 38, 463-467.	9.4	237
60	In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nature Genetics, 2006, 38, 1430-1434.	9.4	453
61	Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2474-2479.	3.3	842
62	Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice. Developmental Biology, 2005, 288, 309-316.	0.9	154
63	A family of human Y chromosomes has dispersed throughout northern Eurasia despite a 1.8-Mb deletion in the azoospermia factor c region. Genomics, 2004, 83, 1046-1052.	1.3	196
64	The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature, 2003, 423, 825-837.	13.7	1,887
65	Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature, 2003, 423, 873-876.	13.7	540
66	Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nature Genetics, 2003, 35, 247-251.	9.4	399
67	Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Developmental Biology, 2003, 262, 303-312.	0.9	309
68	Recombination between Palindromes P5 and P1 on the Human Y Chromosome Causes Massive Deletions and Spermatogenic Failure. American Journal of Human Genetics, 2002, 71, 906-922.	2.6	410
69	Sexually dimorphic gene expression in the developing mouse gonad. Gene Expression Patterns, 2002, 2, 359-367.	0.3	165
70	An abundance of X-linked genes expressed in spermatogonia. Nature Genetics, 2001, 27, 422-426.	9.4	735
71	The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nature Genetics, 2001, 29, 279-286.	9.4	617
72	Four DAZ Genes in Two Clusters Found in the AZFc Region of the Human Y Chromosome. Genomics, 2000, 67, 256-267.	1.3	228

#	Article	IF	CITATIONS
73	An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nature Genetics, 1999, 23, 429-432.	9.4	345
74	Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nature Genetics, 1999, 21, 429-433.	9.4	231
75	Four Evolutionary Strata on the Human X Chromosome. Science, 1999, 286, 964-967.	6.0	894
76	A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature, 1998, 394, 776-780.	13.7	208
77	TheDazhGene Is Expressed in Male and Female Embryonic Gonads before Germ Cell Sex Differentiation. Biochemical and Biophysical Research Communications, 1998, 245, 878-882.	1.0	83
78	Functional Coherence of the Human Y Chromosome. Science, 1997, 278, 675-680.	6.0	794
79	The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nature Genetics, 1996, 14, 292-299.	9.4	427
80	Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA–binding protein gene. Nature Genetics, 1995, 10, 383-393.	9.4	1,183
81	Functional equivalence of human X– and Y–encoded isoforms of ribosomal protein S4 consistent with a role in Turner syndrome. Nature Genetics, 1993, 4, 268-271.	9.4	129
82	Turner syndrome: the case of the missing sex chromosome. Trends in Genetics, 1993, 9, 90-93.	2.9	176