Sun Un

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/972518/publications.pdf Version: 2024-02-01

SUN UN

#	Article	IF	CITATIONS
1	On the nature of decoherence in quantum circuits: Revealing the structural motif of the surface radicals in α-Al ₂ O ₃ . Science Advances, 2022, 8, eabm6169.	4.7	5
2	Understanding the <i>g</i> -tensors of perchlorotriphenylmethyl and Finland-type trityl radicals. Physical Chemistry Chemical Physics, 2020, 22, 20792-20800.	1.3	9
3	An evolutionary path to altered cofactor specificity in a metalloenzyme. Nature Communications, 2020, 11, 2738.	5.8	22
4	Wheat seed ageing viewed through the cellular redox environment and changes in pH. Free Radical Research, 2019, 53, 641-654.	1.5	23
5	lsoquinoline gas-phase absorption spectrum in the vacuum ultraviolet between 3.7 and 10.7ÂeV. New valence and Rydberg electronic states. RSC Advances, 2019, 9, 5121-5141.	1.7	2
6	A charge polarization model for the metal-specific activity of superoxide dismutases. Physical Chemistry Chemical Physics, 2018, 20, 2363-2372.	1.3	7
7	VUV Absorption Spectra of Gas-Phase Quinoline in the 3.5–10.7 eV Photon Energy Range. Journal of Physical Chemistry A, 2018, 122, 5832-5847.	1.1	8
8	Triple resonance EPR spectroscopy determines the Mn2+ coordination to ATP. Journal of Magnetic Resonance, 2018, 294, 143-152.	1.2	6
9	The Use of Mn(II) Bound to His-tags as Genetically Encodable Spin-Label for Nanometric Distance Determination in Proteins. Journal of Physical Chemistry Letters, 2016, 7, 1072-1076.	2.1	22
10	Pulse Electron Double Resonance Detected Multinuclear NMR Spectra of Distant and Low Sensitivity Nuclei and Its Application to the Structure of Mn(II) Centers in Organisms. Journal of Physical Chemistry B, 2015, 119, 13515-13523.	1.2	15
11	How Bonding in Manganous Phosphates Affects their Mn(II)– ³¹ P Hyperfine Interactions. Inorganic Chemistry, 2015, 54, 10422-10428.	1.9	7
12	Nanometric distance measurements between Mn(ii)DOTA centers. Physical Chemistry Chemical Physics, 2015, 17, 23368-23377.	1.3	21
13	Activation of a Unique Flavin-Dependent tRNA-Methylating Agent. Biochemistry, 2013, 52, 8949-8956.	1.2	27
14	Structure and Nature of Manganese(II) Imidazole Complexes in Frozen Aqueous Solutions. Inorganic Chemistry, 2013, 52, 3803-3813.	1.9	26
15	In Situ Determination of Manganese(II) Speciation in Deinococcus radiodurans by High Magnetic Field EPR. Journal of Biological Chemistry, 2013, 288, 5050-5055.	1.6	37
16	A Catalytic Intermediate and Several Flavin Redox States Stabilized by Folate-Dependent tRNA Methyltransferase from <i>Bacillus subtilis</i> . Biochemistry, 2011, 50, 5208-5219.	1.2	22
17	High-field EPR Study of the Effect of Chloride on Mn2+ Ions in Frozen Aqueous Solutions. Applied Magnetic Resonance, 2010, 37, 247-256.	0.6	7
18	Understanding the influence of the protein environment on the Mn(II) centers in Superoxide Dismutases using High-Field Electron Paramagnetic Resonance. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 308-317.	1.1	25

Sun Un

#	Article	IF	CITATIONS
19	pH-Dependent Structures of the Manganese Binding Sites in Oxalate Decarboxylase as Revealed by High-Field Electron Paramagnetic Resonance. Journal of Physical Chemistry B, 2009, 113, 9016-9025.	1.2	31
20	Tuning the Redox Properties of Manganese(II) and Its Implications to the Electrochemistry of Manganese and Iron Superoxide Dismutases. Inorganic Chemistry, 2008, 47, 2897-2908.	1.9	61
21	High-Field 285 GHz Electron Paramagnetic Resonance Study of Indigenous Radicals of Humic Acids. Journal of Physical Chemistry A, 2007, 111, 11860-11866.	1.1	54
22	The Relationship between the Manganese(II) Zero-Field Interaction and Mn(II)/Mn(III) Redox Potential of Mn(4â€~-X-terpy)2Complexes. Journal of the American Chemical Society, 2007, 129, 13825-13827.	6.6	23
23	A Biomimetic Model of the Electron Transfer between P680 and the TyrZ-His190 Pair of PSII. Angewandte Chemie - International Edition, 2005, 44, 1536-1540.	7.2	87
24	Theg-values and hyperfine coupling of amino acid radicals in proteins: comparison of experimental measurements withab initio calculations. Magnetic Resonance in Chemistry, 2005, 43, S229-S236.	1.1	43
25	Temperature-Dependent Coordination in E. coli Manganese Superoxide Dismutase. Journal of the American Chemical Society, 2005, 127, 6039-6047.	6.6	31
26	Manganese(II) Zero-Field Interaction in Cambialistic and Manganese Superoxide Dismutases and Its Relationship to the Structure of the Metal Binding Site. Journal of the American Chemical Society, 2004, 126, 2720-2726.	6.6	50
27	Protein-Based Radicals in the Catalase-Peroxidase ofSynechocystisPCC6803:Â A Multifrequency EPR Investigation of Wild-Type and Variants on the Environment of the Heme Active Site. Journal of the American Chemical Society, 2003, 125, 14093-14102.	6.6	108
28	Direct Measurement of the Hyperfine andg-Tensors of a Mn(III)â^'Mn(IV) Complex in Polycrystalline and Frozen Solution Samples by High-Field EPR. Journal of the American Chemical Society, 2003, 125, 11637-11645.	6.6	23
29	Resolving intermediates in biological proton-coupled electron transfer: A tyrosyl radical prior to proton movement. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8732-8735.	3.3	112
30	Multifrequency High-Field EPR Study of the Tryptophanyl and Tyrosyl Radical Intermediates in Wild-Type and the W191G Mutant of CytochromecPeroxidase. Journal of the American Chemical Society, 2001, 123, 5050-5058.	6.6	75
31	Sensitivity of Tyrosyl Radicalg-Values to Changes in Protein Structure:Â A High-Field EPR Study of Mutants of Ribonucleotide Reductase. Journal of the American Chemical Society, 2001, 123, 3048-3054.	6.6	61
32	High-Field EPR Characterization of Manganese Reconstituted Superoxide Dismutase fromRhodobacter capsulatus. Journal of the American Chemical Society, 2001, 123, 10123-10124.	6.6	27
33	245 GHz High-Field EPR Study of Tyrosine-D° and Tyrosine-Z° in Mutants of Photosystem IIâ€. Biochemistry, 1996, 35, 679-684.	1.2	119
34	g-Values as a Probe of the Local Protein Environment: High-Field EPR of Tyrosyl Radicals in Ribonucleotide Reductase and Photosystem II. Journal of the American Chemical Society, 1995, 117, 10713-10719.	6.6	141