List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9721355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous ZnO/hydroxyapatite nanomaterials with effective photocatalytic and antibacterial activities for the degradation of antibiotics. Nanotechnology for Environmental Engineering, 2022, 7, 333-341.	3.3	7
2	Synthesis and properties of Ag2S-Hydroxyapatite nanocomposite materials. Materials Today: Proceedings, 2022, 66, 58-62.	1.8	1
3	Characterization and valorization of natural phosphate in removing of heavy metals and toxic organic species from water. Journal of African Earth Sciences, 2021, 173, 104022.	2.0	6
4	Mesoporous nanocrystalline sulfonated hydroxyapatites enhance heavy metal removal and antimicrobial activity. Separation and Purification Technology, 2021, 255, 117777.	7.9	22
5	Electrical and dielectric behaviors of thermally treated phosphate minerals. Solid State Sciences, 2021, 111, 106440.	3.2	4
6	Mechanical strength characterization and modeling of hydroxyapatite/tricalcium phosphate biocomposite using the diametral-compression test. EPJ Applied Physics, 2021, 93, 30403.	0.7	1
7	Effect of the surface chemistry on the stability and mechanical properties of the Zirconia-Hydroxyapatite bioceramic. Surfaces and Interfaces, 2021, 23, 100980.	3.0	6
8	A novel approach for the synthesis of nanostructured Ag3PO4 from phosphate rock: high catalytic and antibacterial activities. BMC Chemistry, 2021, 15, 42.	3.8	9
9	Photocatalytic degradation of emerging antibiotic pollutants in waters by TiO2/Hydroxyapatite nanocomposite materials. Surfaces and Interfaces, 2021, 24, 101155.	3.0	21
10	The densification and diametral compression strength of Hydroxyapatite-Zirconia bioceramics: Experimental and modelling studies. Materials Today: Proceedings, 2021, , .	1.8	1
11	Hydrophobic chemical surface functionalization of hydroxyapatite nanoparticles for naphthalene removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124706.	4.7	14
12	A comparative study of the photocatalytic efficiency of metal oxide/hydroxyapatite nanocomposites in the degradation kinetic of ciprofloxacin in water. E3S Web of Conferences, 2020, 150, 02006.	0.5	2
13	A new in situ enhancement of the hydroxyapatite surface by Tyramine: Preparation and interfacial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124590.	4.7	3
14	Alumina-hydroxyapatite nanocomposites and their applications for the removal of phenolic compounds from water: A comparative study. E3S Web of Conferences, 2020, 150, 02008.	0.5	1
15	Structural, thermal and dielectric properties of Pb(Mg _{1/3} Nb _{2/3}) _{1‑<i>x</i>} Ti _{<i>x</i>} O ₃ ceramics at morphotropic phase boundary. EPJ Applied Physics, 2020, 92, 10902.	0.7	10
16	Characterization of Natural Gypsum Materials and Their Composites for Building Applications. Applied Sciences (Switzerland), 2019, 9, 2443.	2.5	34
17	Synthesis and properties of alumina-hydroxyapatite composites from natural phosphate for phenol removal from water. Colloids and Interface Science Communications, 2019, 31, 100188.	4.1	25
18	Development and Characterization of Hydroxyapatite-Alumina Biocomposites for Orthopedic Implants. Key Engineering Materials, 2019, 820, 97-103.	0.4	2

#	Article	IF	CITATIONS
19	Development of sulfonate-functionalized hydroxyapatite nanoparticles for cadmium removal from aqueous solutions. Colloids and Interface Science Communications, 2019, 30, 100178.	4.1	31
20	Investigation of thermal properties and energy harvesting of the Pb(Mg1/3Nb2/3)1-xTixO3 perovskite single crystals. Thermochimica Acta, 2019, 672, 118-125.	2.7	10
21	Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 364-370.	4.7	69
22	Finite Element Modeling of Mechanical Behavior of Al ₂ O ₃ –ZrO ₂ Reinforced Calcium Phosphate Biomaterials. Sensor Letters, 2018, 16, 478-483.	0.4	2
23	Synthesis, Rietveld refinements and electrical conductivity of news fluorobritholite based on lead Ca7-xPbxLa3(PO4)3(SiO4)3F2 (0Ââ‰ÂxÂâ‰Â2). Journal of Molecular Structure, 2017, 1147, 114-120.	3.6	6
24	Oil shale powders and their interactions with ciprofloxacin, ofloxacin, and oxytetracycline antibiotics. Environmental Science and Pollution Research, 2017, 24, 25977-25985.	5.3	9
25	Low-cost composites based on porous titania–apatite surfaces for the removal of patent blue V from water: Effect of chemical structure of dye. Journal of Advanced Research, 2016, 7, 1009-1017.	9.5	16
26	Mechanical properties of calcium phosphate biomaterials. Molecular Crystals and Liquid Crystals, 2016, 628, 198-203.	0.9	1
27	Analysis of stress field in Al2O3-ZrO2biomaterials by finite element method. Molecular Crystals and Liquid Crystals, 2016, 627, 141-147.	0.9	1
28	Nanoscale conversion of chlorapatite into hydroxyapatite using ultrasound irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 187-192.	4.7	12
29	Organophosphonate-modified hydroxyapatites for Zn(II) and Pb(II) adsorption in relation of their structure and surface properties. Journal of Environmental Chemical Engineering, 2016, 4, 428-433.	6.7	24
30	Parameters influencing ciprofloxacin, ofloxacin, amoxicillin and sulfamethoxazole retention by natural and converted calcium phosphates. Journal of Hazardous Materials, 2015, 291, 38-44.	12.4	28
31	Porous hydroxyapatite-TiO2 nanocomposites from natural phosphates and their decolorization properties. European Physical Journal: Special Topics, 2015, 224, 1861-1869.	2.6	7
32	Carboxylate-modified apatite adsorbents for detection of Zn(II) ions. Desalination and Water Treatment, 2015, 54, 1949-1955.	1.0	1
33	Natural phosphate and its derivative porous hydroxyapatite for the removal of toxic organic chemicals. Desalination and Water Treatment, 2014, 52, 7265-7269.	1.0	7
34	Organo-apatites for lead removal from aqueous solutions: A comparison between carboxylic acid and aminophosphonate surface modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 180-185.	4.7	34
35	Comparative Study of Surface Functionalization of Hydroxyapatite by Oneâ€pot Grafting of Organophosphonates Species. Journal of the Chinese Chemical Society, 2013, 60, 1425-1430.	1.4	1
36	Lead and zinc removal from aqueous solutions by aminotriphosphonate-modified converted natural phosphates. Chemical Engineering Journal, 2012, 211-212, 233-239.	12.7	22

#	Article	IF	CITATIONS
37	Interaction of metal(II)-tetra(4-sulfonatophenyl) porphyrins with porous hydroxyapatite surfaces. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 996-1001.	5.3	8
38	Manufacturing and mechanical properties of calcium phosphate biomaterials. Comptes Rendus - Mecanique, 2012, 340, 715-720.	2.1	21
39	Surface properties of porous hydroxyapatite derived from natural phosphate. Materials Chemistry and Physics, 2012, 136, 1022-1026.	4.0	15
40	Synthesis and characterization of nanoapatites organofunctionalized with aminotriphosphonate agents. Journal of Solid State Chemistry, 2012, 185, 95-100.	2.9	11
41	Ultrasound-Assisted Synthesis of Mesoporous Zirconia-Hydroxyapatite Nanocomposites and Their Dual Surface Affinity for Cr ³⁺ /Cr ₂ O ₇ ^{2–} Ions. Langmuir, 2011, 27, 15176-15184.	3.5	18
42	Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: Influence of porosity and surface interactions. Journal of Hazardous Materials, 2010, 181, 736-741.	12.4	63
43	The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics. Materials Research Bulletin, 2010, 45, 1433-1437.	5.2	36
44	Nanoporous surface of organofunctionalized hydroxyapatite fabricated from natural phosphate rock. Materials Letters, 2010, 64, 2679-2681.	2.6	21
45	Conversion of natural phosphate rock into mesoporous hydroxyapatite for heavy metals removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362, 33-38.	4.7	49
46	Role of carboxylate chelating agents on the chemical, structural and textural properties of hydroxyapatite. Dalton Transactions, 2010, 39, 10644.	3.3	45
47	Microwave-Assisted and Efficient Solvent-free Knoevenagel Condensation. A Sustainable Protocol Using Porous Calcium Hydroxyapatite as Catalyst. Molecules, 2010, 15, 813-823.	3.8	53
48	Structure electronic and ionic conductivity study versus Ca content in Ca10â^'xSrx(PO4)6F2 apatites. Materials Research Bulletin, 2009, 44, 1592-1595.	5.2	12
49	Structure and thermal behaviors of Moroccan phosphate rock (Bengurir). Journal of Thermal Analysis and Calorimetry, 2009, 95, 15-19.	3.6	33
50	A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 350, 73-78.	4.7	47
51	Adsorption of phenol from an aqueous solution by selected apatite adsorbents: Kinetic process and impact of the surface properties. Water Research, 2009, 43, 313-318.	11.3	74
52	Organically modified porous hydroxyapatites: A comparison between alkylphosphonate grafting and citrate chelation. Journal of Solid State Chemistry, 2008, 181, 848-854.	2.9	21
53	Mesoporous hydroxyapatites prepared in ethanol–water media: Structure and surface properties. Materials Chemistry and Physics, 2007, 104, 448-453.	4.0	42
54	Some Factors Affecting the Removal of Lead(II) Ions from Aqueous Solution by Porous Calcium Hydroxyapatite: Relationships between Surface and Adsorption Properties. Adsorption Science and Technology, 2006, 24, 507-516.	3.2	18

4

#	Article	IF	CITATIONS
55	Porous Calcium Hydroxyapatite as an Efficient Catalyst for Synthesis of Pyrazolines via 1,3â€Dipolar Cycoloaddition Under Solventâ€Free Microwave Irradiation. Synthetic Communications, 2006, 36, 111-120.	2.1	32
56	Chemical modification of porous calcium hydroxyapatite surfaces by grafting phenylphosphonic and phenylphosphite acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 84-88.	4.7	30
57	Crystallinity and fluorine substitution effects on the proton conductivity of porous hydroxyapatites. Journal of Solid State Chemistry, 2004, 177, 134-138.	2.9	29
58	Retention of fluoride ions from aqueous solution using porous hydroxyapatiteStructure and conduction properties. Journal of Hazardous Materials, 2004, 114, 41-44.	12.4	59
59	Paradoxical crystalline morphology of frosted glass. Journal of Non-Crystalline Solids, 2004, 345-346, 137-141.	3.1	15
60	Mechanism of ionic conduction in oxy and hydroxyapatite structures. Solid State Sciences, 2001, 3, 743-747.	0.7	30
61	Effect of chemical treatments on the ionic conductivity of carbonate apatite. Solid State Sciences, 2001, 3, 437-441.	0.7	19
62	Comparison of Electrical Properties between Fluoroapatite and Hydroxyapatite Materials. Journal of Solid State Chemistry, 2001, 156, 57-60.	2.9	71
63	Electrical behavior of hydroxyapatites M10(PO4)6(OH)2 (M = Ca, Pb, Ba). Materials Research Bulletin, 2001, 36, 953-962.	5.2	61
64	Sorption study of tribenuronâ€nethyl onto apatite minerals. Toxicological and Environmental Chemistry, 2001, 81, 9-15.	1.2	10
65	Fluoride effect on the electrochemical behaviour of the Fe(III)/Fe(II) system in H3PO4+H2O+HF. Journal of Fluorine Chemistry, 2000, 105, 1-5.	1.7	8
66	Removal of fluoride from moroccan phosphate and synthetic fluoroapatites. Journal of Fluorine Chemistry, 2000, 101, 69-73.	1.7	22
67	Cationic conductivity and structural studies in the Pb8K2â^'xNax(PO4)6 system. Solid State Ionics, 2000, 128, 177-181.	2.7	35
68	Ionic conductivities of lithium fluorapatites. Solid State Ionics, 1999, 126, 245-250.	2.7	22
69	Anionic Conductivity in Fluorapatites: Correlation between Structure and Electrical Properties. Advanced Materials Research, 1994, 1-2, 479-488.	0.3	22
70	Mixed ionic conductivities in sodium fluoroapatites. Solid State Ionics, 1993, 67, 137-143.	2.7	33
71	Effect of heat treatment on the surface properties of selected bituminous shale for cationic dye sorption. , 0, 66, 274-280.		5
72	Surface properties of Moroccan natural phosphate and its converted hydroxyapatite for adsorption of Cr3+/Cr2O72- ions: Kinetics and isotherms. , 0, 100, 145-150.		1

#	Article	IF	CITATIONS
73	Application of central composite design for optimisation of the development of metakaolin based geopolymer as adsorbent for water treatment. International Journal of Environmental Analytical Chemistry, 0, , 1-19.	3.3	7