Franck Sabatie

List of Publications by Citations

Source: https://exaly.com/author-pdf/972111/franck-sabatie-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

221
papers

9,621
citations

52
h-index

87
g-index

11,031
ext. papers

4.8
avg, IF

L-index

#	Paper	IF	Citations
221	Electron-Ion Collider: The next QCD frontier. <i>European Physical Journal A</i> , 2016 , 52, 1	2.5	512
220	Observation of an exotic $S = +1$ baryon in exclusive photoproduction from the deuteron. <i>Physical Review Letters</i> , 2003 , 91, 252001	7.4	341
219	Precision Determination of the Neutron Spin Structure Function g1n. <i>Physical Review Letters</i> , 1997 , 79, 26-30	7.4	272
218	Observation of Exclusive Deeply Virtual Compton Scattering in Polarized Electron Beam Asymmetry Measurements. <i>Physical Review Letters</i> , 2001 , 87,	7.4	219
217	Observation of an exotic baryon with S=+1 in photoproduction from the proton. <i>Physical Review Letters</i> , 2004 , 92, 032001	7.4	217
216	Differential cross sections for ⊞p->K++Y for ⊡and D hyperons. <i>Physical Review C</i> , 2006 , 73,	2.7	210
215	Measurements of the Q2-dependence of the proton and neutron spin structure functions g1p and g1n. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2000 , 493, 19-28	4.2	194
214	Measurement of two- and three-nucleon short-range correlation probabilities in nuclei. <i>Physical Review Letters</i> , 2006 , 96, 082501	7.4	181
213	Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. <i>Physical Review C</i> , 2009 , 80,	2.7	173
212	Nuclear physics. Momentum sharing in imbalanced Fermi systems. <i>Science</i> , 2014 , 346, 614-7	33.3	159
211	Parity-violating electroweak asymmetry in e p scattering. <i>Physical Review C</i> , 2004 , 69,	2.7	158
210	Hyperon photoproduction in the nucleon resonance region. <i>Physical Review C</i> , 2004 , 69,	2.7	146
209	Measurement of the deuteron spin structure function g1d(x) for 1 (GeV/c)2. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1999 , 463, 339-345	4.2	144
208	Scaling tests of the cross section for deeply virtual Compton scattering. <i>Physical Review Letters</i> , 2006 , 97, 262002	7.4	125
207	Measurement of deeply virtual compton scattering beam-spin asymmetries. <i>Physical Review Letters</i> , 2008 , 100, 162002	7.4	122
206	Precision measurement of the proton and deuteron spin structure functions g2 and asymmetries A2. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2003 , 553, 18-24	4.2	122
205	First measurement of beam-recoil observables Cx and Cz in hyperon photoproduction. <i>Physical Review C</i> , 2007 , 75,	2.7	118

(2006-2010)

204	Differential cross section and recoil polarization measurements for the β ->K+lreaction using CLAS at Jefferson Lab. <i>Physical Review C</i> , 2010 , 81,	2.7	116
203	Eta photoproduction on the proton for photon energies from 0.75 to 1.95 GeV. <i>Physical Review Letters</i> , 2002 , 89, 222002	7.4	107
202	Observation of nuclear scaling in the A(e,e?) reaction at xB>1. <i>Physical Review C</i> , 2003 , 68,	2.7	105
201	Polarization transfer in the 4He(e>,e'p>)3H reaction up to Q2=2.6 (GeV/c)2. <i>Physical Review Letters</i> , 2003 , 91, 052301	7.4	105
200	Next-to-leading order QCD analysis of polarized deep inelastic scattering data. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1997 , 405, 180-190	4.2	98
199	Deeply virtual compton scattering off the neutron. <i>Physical Review Letters</i> , 2007 , 99, 242501	7.4	98
198	Measurement of ep>e' ppi+ pi- and baryon resonance analysis. <i>Physical Review Letters</i> , 2003 , 91, 0220	0 ≱ .4	96
197	Measurement of the x- and Q2-dependence of the asymmetry A1 on the nucleon. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2006 , 641, 11-17	4.2	95
196	Measurement of beam-spin asymmetries for ⊞ electroproduction above the baryon resonance region. <i>Physical Review D</i> , 2004 , 69,	4.9	95
195	Experimental study of the P11(1440) and D13(1520) resonances from the CLAS data on ep->e?冊p?. <i>Physical Review C</i> , 2012 , 86,	2.7	94
194	⊞ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV. <i>Physical Review C</i> , 2009 , 79,	2.7	89
193	Measurement of the [photoproduction line shapes near the [11405). Physical Review C, 2013, 87,	2.7	86
192	New measurement of parity violation in elastic electron proton scattering and implications for strange form factors. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2001 , 509, 211-216	4.2	86
191	Measurement of deeply virtual compton scattering with a polarized-proton target. <i>Physical Review Letters</i> , 2006 , 97, 072002	7.4	85
190	Differential cross sections for the reactions β ->p \Box Physical Review C, 2009 , 80,	2.7	82
189	Measurement of the proton and deuteron spin structure functions g2 and asymmetry A2. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1999 , 458, 529-535	4.2	81
188	Search for the Theta+ pentaquark in the reaction gammad> pK-K+n. <i>Physical Review Letters</i> , 2006 , 96, 212001	7.4	79
187	Measurement of the N>Delta(+)(1232) transition at high-momentum transfer by pi(0) electroproduction. <i>Physical Review Letters</i> , 2006 , 97, 112003	7.4	79

186	Q2 dependence of the S11(1535) photocoupling and evidence for a P-wave resonance in I electroproduction. <i>Physical Review C</i> , 2007 , 76,	2.7	73
185	D photoproduction on the proton for photon energies from 0.675 to 2.875 GeV. <i>Physical Review C</i> , 2007 , 76,	2.7	72
184	Publisher Note: Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton [Phys. Rev. Lett.PRLTAO0031-9007 92, 032001 (2004)]. <i>Physical Review Letters</i> , 2004 , 92,	7.4	69
183	Q2 evolution of the generalized Gerasimov-Drell-Hearn integral for the neutron using a 3He target. <i>Physical Review Letters</i> , 2002 , 89, 242301	7.4	69
182	Precise measurement of the neutron magnetic form factor G(M)n in the few-GeV2 region. <i>Physical Review Letters</i> , 2009 , 102, 192001	7.4	68
181	PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers. <i>Science China: Physics, Mechanics and Astronomy</i> , 2017 , 60, 1	3.6	66
180	Search for Theta+ (1540) Pentaquark in High-Statistics Measurement of gammap>K0K+n at CLAS. <i>Physical Review Letters</i> , 2006 , 96, 042001	7.4	66
179	Q2 evolution of the neutron spin structure moments using a 3He target. <i>Physical Review Letters</i> , 2004 , 92, 022301	7·4	66
178	Measurement of the neutron spin structure function gn2 and asymmetry An2. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1997 , 404, 377-382	4.2	64
177	Probing high-momentum protons and neutrons in neutron-rich nuclei. <i>Nature</i> , 2018 , 560, 617-621	50.4	62
176	Measurement of the proton spin structure function g1(x,Q2) for Q2 from 0.15 to 1.6 GeV2 with CLAS. <i>Physical Review Letters</i> , 2003 , 91, 222002	7.4	62
175	Search for medium modifications of the rho meson. <i>Physical Review Letters</i> , 2007 , 99, 262302	7.4	61
174	Measurement of single- and double-spin asymmetries in deep inelastic pion electroproduction with a longitudinally polarized target. <i>Physical Review Letters</i> , 2010 , 105, 262002	7.4	60
173	Towards a resolution of the proton form factor problem: new electron and positron scattering data. <i>Physical Review Letters</i> , 2015 , 114, 062003	7.4	59
172	Electroexcitation of the Roper resonance for 1.7. Physical Review C, 2008, 78,	2.7	59
171	From hard exclusive meson electroproduction to deeply virtual Compton scattering. <i>European Physical Journal C</i> , 2013 , 73, 1	4.2	58
170	First measurement of transferred polarization in the exclusive ep>e'K+Lambda> reaction. <i>Physical Review Letters</i> , 2003 , 90, 131804	7.4	53
169	Absorption of the 🖆 nd ? mesons in nuclei. <i>Physical Review Letters</i> , 2010 , 105, 112301	7.4	52

(2012-2006)

168	Eta' photoproduction on the proton for photon energies from 1.527 to 2.227 GeV. <i>Physical Review Letters</i> , 2006 , 96, 062001	7.4	52
167	Cross sections and beam asymmetries for e->p->en⊞ in the nucleon resonance region for 1.7?Q2?4.5 GeV2. <i>Physical Review C</i> , 2008 , 77,	2.7	51
166	Light vector mesons in the nuclear medium. <i>Physical Review C</i> , 2008 , 78,	2.7	51
165	Differential photoproduction cross sections of the D(1385), (11405), and (11520). <i>Physical Review C</i> , 2013 , 88,	2.7	50
164	Modified structure of protons and neutrons in correlated pairs. <i>Nature</i> , 2019 , 566, 354-358	50.4	50
163	Measurement of the polarized structure function IT? for p(e->,e?p) in the (1232) resonance region. <i>Physical Review C</i> , 2003 , 68,	2.7	49
162	Kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments. <i>Physical Review D</i> , 2003 , 67,	4.9	48
161	Search for the \blacksquare pentaquark in the reactions β ->K \square 0K+n and β ->K \square 0K0p. <i>Physical Review D</i> , 2006 , 74,	4.9	47
160	Measurement of semi-inclusive \blacksquare electroproduction off the proton. <i>Physical Review D</i> , 2009 , 80,	4.9	46
159	Single \blacksquare electroproduction on the proton in the first and second resonance regions at 0.25GeV2. <i>Physical Review C</i> , 2006 , 73,	2.7	46
158	Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic H2(e,e?ps)X scattering with CLAS. <i>Physical Review C</i> , 2014 , 89,	2.7	45
157	Cross Sections for the Exclusive Photon Electroproduction on the Proton and Generalized Parton Distributions. <i>Physical Review Letters</i> , 2015 , 115, 212003	7.4	45
156	Sketching the pion's valence-quark generalised parton distribution. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2015 , 741, 190-196	4.2	44
155	Differential cross sections and spin density matrix elements for the reaction β ->p \square <i>Physical Review C</i> , 2009 , 80,	2.7	44
154	E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV. <i>Physical Review C</i> , 2015 , 92,	2.7	43
153	Separated structure functions for the exclusive electroproduction of K+Land K+D final states. <i>Physical Review C</i> , 2007 , 75,	2.7	43
152	Beam-helicity asymmetries in double-charged-pion photoproduction on the proton. <i>Physical Review Letters</i> , 2005 , 95, 162003	7.4	40
151	Measurement of exclusive (D) electroproduction structure functions and their relationship to transverse generalized parton distributions. <i>Physical Review Letters</i> , 2012 , 109, 112001	7.4	39

150	Exclusive D electroproduction on the proton at CLAS. European Physical Journal A, 2009, 39, 5-31	2.5	39
149	Measurements of ep->e?⊞n at 1.6. <i>Physical Review C</i> , 2015 , 91,	2.7	37
148	Moments of the spin structure functions g1p and g1d for 0.05. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2009 , 672, 12-16	4.2	37
147	Quark-hadron duality in spin structure functions g1p and g1d. <i>Physical Review C</i> , 2007 , 75,	2.7	37
146	Measurement of the polarized structure function \Box T? for p(e ,e? \Box)n in the (1232) resonance region. <i>Physical Review C</i> , 2004 , 70,	2.7	37
145	Measurement of the 3He(e,e'p)pn reaction at high missing energies and momenta. <i>Physical Review Letters</i> , 2005 , 94, 082305	7.4	37
144	Spin and parity measurement of the [1405] baryon. Physical Review Letters, 2014, 112,	7.4	35
143	Search for the Theta+ Pentaquark in the gammad> DeltanK+ reaction measured with the CLAS spectrometer. <i>Physical Review Letters</i> , 2006 , 97, 032001	7.4	35
142	Measurement of the neutron F2 structure function via spectator tagging with CLAS. <i>Physical Review Letters</i> , 2012 , 108, 142001	7.4	34
141	Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5 and 3GeV. <i>Physical Review C</i> , 2004 , 70,	2.7	34
140	Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target. <i>Physical Review D</i> , 2015 , 91,	4.9	33
139	Exclusive . Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 605, 25	6 ₋ 2 <u>6</u> 4	33
138	Deeply virtual and exclusive electroproduction of Emesons. European Physical Journal A, 2005, 24, 445-4	1 5:8 5	33
137	Longitudinal target-spin asymmetries for deeply virtual compton scattering. <i>Physical Review Letters</i> , 2015 , 114, 032001	7.4	31
136	Two-nucleon momentum distributions measured in 3He(e,e'pp)n. <i>Physical Review Letters</i> , 2004 , 92, 052	3 9 0.24	31
135	Onset of asymptotic scaling in deuteron photodisintegration. <i>Physical Review Letters</i> , 2005 , 94, 012301	7.4	31
134	Electroproduction of p⊞toff protons at 0.2. <i>Physical Review C</i> , 2009 , 79,	2.7	30
133	Quasielastic 3He(e,e'p)2H reaction at Q2 = 1.5 GeV2 for recoil momenta up to 1 GeV/c. <i>Physical Review Letters</i> , 2005 , 94, 192302	7.4	30

(2009-2016)

132	Photoproduction of 🗈 nd 🗓 hyperons using linearly polarized photons. <i>Physical Review C</i> , 2016 , 93,	2.7	29	
131	Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction β ->?p. <i>Physical Review C</i> , 2014 , 89,	2.7	29	
130	Beam-recoil polarization transfer in the nucleon resonance region in the exclusive e->p->e'K+E> and e->p->e'K+E>0 reactions at the CLAS spectrometer. <i>Physical Review C</i> , 2009 , 79,	2.7	29	
129	Partial wave analysis of the reaction β ->p \Box and the search for nucleon resonances. <i>Physical Review C</i> , 2009 , 80,	2.7	29	
128	Measurement of the differential cross section for the reaction gamman>pi- p from deuterium. <i>Physical Review Letters</i> , 2009 , 103, 012301	7.4	29	
127	Cascade production in the reactions β ->K+K+(X) and β ->K+K+(X). <i>Physical Review C</i> , 2007 , 76,	2.7	29	
126	Compton-scattering cross section on the proton at high momentum transfer. <i>Physical Review Letters</i> , 2007 , 98, 152001	7.4	29	
125	First measurement of the helicity asymmetry E in photoproduction on the proton. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 755, 64-69	4.2	29	
124	Center of Mass Motion of Short-Range Correlated Nucleon Pairs studied via the A(e,e^{'}pp) Reaction. <i>Physical Review Letters</i> , 2018 , 121, 092501	7.4	29	
123	Timelike and spacelike deeply virtual Compton scattering at next-to-leading order. <i>Physical Review D</i> , 2013 , 87,	4.9	28	
122	Beam asymmetry Ifor \blacksquare and \blacksquare photoproduction on the proton for photon energies from 1.102 to 1.862 GeV. <i>Physical Review C</i> , 2013 , 88,	2.7	28	
121	Rosenbluth Separation of the 🛮 {0} Electroproduction Cross Section. <i>Physical Review Letters</i> , 2016 , 117, 262001	7.4	28	
120	Beam spin asymmetries in deeply virtual Compton scattering (DVCS) with CLAS at 4.8 GeV. <i>Physical Review C</i> , 2009 , 80,	2.7	27	
119	Photoproduction of Himeson pairs on the proton. <i>Physical Review D</i> , 2009 , 80,	4.9	27	
118	Measurement of the generalized forward spin polarizabilities of the neutron. <i>Physical Review Letters</i> , 2004 , 93, 152301	7.4	27	
117	Radiative decays of the 🛭 (1385) and 🕻 1520) hyperons. <i>Physical Review C</i> , 2005 , 71,	2.7	27	
116	Precise measurements of beam spin asymmetries in semi-inclusive D production. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2011 , 704, 397-402	4.2	26	
115	Search for the photoexcitation of exotic mesons in the pi+pi+pi- system. <i>Physical Review Letters</i> , 2009 , 102, 102002	7.4	26	

114	Publisher Note: Measurement of the Neutron F2 Structure Function via Spectator Tagging with CLAS [Phys. Rev. Lett. 108, 142001 (2012)]. <i>Physical Review Letters</i> , 2012 , 108,	7.4	26
113	Polarized structure function $\square T'$ for H1(e->,e'K+) \square n the nucleon resonance region. <i>Physical Review C</i> , 2008 , 77,	2.7	26
112	Cross sections for the β->K*0⊞ reaction at E⊞1.7B.0 GeV. <i>Physical Review C</i> , 2007 , 75,	2.7	26
111	Measurements of ep->e?冊? cross sections with CLAS at 1.40GeV. <i>Physical Review C</i> , 2017 , 96,	2.7	25
110	Exclusive neutral pion electroproduction in the deeply virtual regime. <i>Physical Review C</i> , 2011 , 83,	2.7	25
109	Evidence for the onset of color transparency in D electroproduction off nuclei. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2012 , 712, 326-330	4.2	24
108	Measurement of two-photon exchange effect by comparing elastic e∃p cross sections. <i>Physical Review C</i> , 2017 , 95,	2.7	24
107	Electroproduction of ?(1020) mesons at 1.4?Q2?3.8 GeV2 measured with the CLAS spectrometer. <i>Physical Review C</i> , 2008 , 78,	2.7	24
106	Experimental study of exclusive 2H(e,e'p)n reaction mechanisms at high Q2. <i>Physical Review Letters</i> , 2007 , 98, 262502	7.4	24
105	Electroproduction of the [1520) hyperon. <i>Physical Review C</i> , 2001 , 64,	2.7	24
104	PARTONS: PARtonic Tomography Of Nucleon Software. European Physical Journal C, 2018, 78, 1	4.2	24
103	Exclusive D electroproduction at W>2 GeV with CLAS. <i>Physical Review C</i> , 2014 , 90,	2.7	23
102	Precision measurements of g1 of the proton and of the deuteron with 6 GeV electrons. <i>Physical Review C</i> , 2014 , 90,	2.7	23
101	Electron scattering from high-momentum neutrons in deuterium. <i>Physical Review C</i> , 2006 , 73,	2.7	23
100	Exclusive photoproduction of the cascade (Thyperons. <i>Physical Review C</i> , 2005 , 71,	2.7	23
99	Differential cross section of . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2010 , 688, 289-293	4.2	22
98	Measurement of ep->epD beam spin asymmetries above the resonance region. <i>Physical Review C</i> , 2008 , 77,	2.7	22

(2013-2017)

96	Photon beam asymmetry Ifor Iand I photoproduction from the proton. <i>Physics Letters, Section B:</i> Nuclear, Elementary Particle and High-Energy Physics, 2017 , 771, 213-221	4.2	21	
95	Tensor correlations measured in 3He(e,e' pp)n. <i>Physical Review Letters</i> , 2010 , 105, 222501	7.4	21	
94	2H(e,e(')p)n reaction at high recoil momenta. <i>Physical Review Letters</i> , 2002 , 89, 062301	7.4	21	
93	Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution. <i>Physical Review C</i> , 2015 , 92,	2.7	20	
92	First measurement of the polarization observable E in the p->(₺,⊞)n reaction up to 2.25 GeV. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2015 , 750, 53-58	4.2	20	
91	?-meson photoproduction on hydrogen in the neutral decay mode. <i>Physical Review C</i> , 2014 , 89,	2.7	20	
90	Demonstration of a novel technique to measure two-photon exchange effects in elastic e∃p scattering. <i>Physical Review C</i> , 2013 , 88,	2.7	19	
89	Measurement of the differential and total cross sections of the 🛭->K0(þ) reaction within the resonance region. <i>Physical Review C</i> , 2017 , 96,	2.7	19	
88	A glimpse of gluons through deeply virtual compton scattering on the proton. <i>Nature Communications</i> , 2017 , 8, 1408	17.4	19	
87	Measurement of transparency ratios for protons from short-range correlated pairs. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2013 , 722, 63-68	4.2	19	
86	The extraction of . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2009 , 680, 417-422	4.2	19	
85	3He spin-dependent cross sections and sum rules. <i>Physical Review Letters</i> , 2008 , 101, 022303	7.4	19	
84	Complete measurement of three-body photodisintegration of He3 for photon energies between 0.35 and 1.55GeV. <i>Physical Review C</i> , 2004 , 70,	2.7	19	
83	First Exclusive Measurement of Deeply Virtual Compton Scattering off ^{4}He: Toward the 3D Tomography of Nuclei. <i>Physical Review Letters</i> , 2017 , 119, 202004	7.4	18	
82	Proton source size measurements in the eA>e'ppX reaction. <i>Physical Review Letters</i> , 2004 , 93, 192301	7.4	18	
81	First measurement of the double spin asymmetry in (>)e(>)p>e(prime)pi(+)n in the resonance region. <i>Physical Review Letters</i> , 2002 , 88, 082001	7.4	18	
80	Determination of the proton spin structure functions for 0.05. <i>Physical Review C</i> , 2017 , 96,	2.7	17	
79	Test of two new parametrizations of the generalized parton distribution H. <i>Physical Review D</i> , 2013 , 88,	4.9	17	

78	Measurement of direct f0(980) photoproduction on the proton. <i>Physical Review Letters</i> , 2009 , 102, 102	209.14	17
77	First measurement of target and double spin asymmetries for e->p->->ep D in the nucleon resonance region above the [1232]. <i>Physical Review C</i> , 2008 , 78,	2.7	17
76	Measurement of the polarized structure function $\Pi T'$ for pion electroproduction in the Roper-resonance region. <i>Physical Review C</i> , 2005 , 72,	2.7	17
<i>75</i>	First results on nucleon resonance photocouplings from the β -> $\Box \beta$ reaction. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2019 , 788, 371-379	4.2	16
74	Beam-Target Helicity Asymmetry for [bver ->]n[over ->]->[]{-}p in the N^{*} Resonance Region. <i>Physical Review Letters</i> , 2017 , 118, 242002	7.4	16
73	Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments. <i>Physical Review C</i> , 2006 , 73,	2.7	16
72	Measurement of coherent ?-meson photoproduction from the deuteron at low energies. <i>Physical Review C</i> , 2007 , 76,	2.7	16
71	Exclusive electroproduction of Imesons at 4.2 GeV. <i>Physical Review C</i> , 2001 , 63,	2.7	16
70	Deep exclusive ⊞ electroproduction off the proton at CLAS. <i>European Physical Journal A</i> , 2013 , 49, 1	2.5	15
69	First observation of the [11405) line shape in electroproduction. <i>Physical Review C</i> , 2013 , 88,	2.7	15
68	Publisher's Note: Differential photoproduction cross sections of the <code>0(1385)</code> , <code>(1405)</code> , and <code>(1520)</code> [Phys. Rev. C 88, 045201 (2013)]. <i>Physical Review C</i> , 2013 , 88,	2.7	15
67	Electromagnetic decay of the Ū (1385) to Π <i>Physical Review D</i> , 2011 , 83,	4.9	15
66	Beam-spin asymmetries from semi-inclusive pion electroproduction. <i>Physical Review D</i> , 2014 , 89,	4.9	14
65	Micromegas tracker project for CLAS12. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2009 , 604, 53-55	1.2	14
64	Evidence for a backward peak in the d -> 0d cross section near the Chreshold. <i>European Physical Journal A</i> , 2010 , 43, 261-267	2.5	14
63	A Geant4-based study on the origin of the sparks in a Micromegas detector and estimate of the spark probability with hadron beams. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2010 , 621, 177-183	1.2	14
62	Inclusive hadron photoproduction from longitudinally polarized protons and deuterons. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1999 , 458, 536-544	4.2	14
61	Differential cross section measurements for 🗈->🗗 above the first nucleon resonance region. Physical Review C, 2017 , 96,	2.7	13

(2014-2018)

Measurements of the $\square p -> p ? \boxplus \square t$ ross section with the CLAS detector for 0.4 GeV2. <i>Physical Review C</i> , 2018 , 98,	2.7	13	
Separated structure functions for exclusive K+land K+D electroproduction at 5.5 GeV measured with CLAS. <i>Physical Review C</i> , 2013 , 87,	2.7	13	
Bayesian analysis of pentaquark signals from CLAS data. <i>Physical Review Letters</i> , 2008 , 100, 052001	7.4	13	
Search for Theta++ pentaquarks in the exclusive reaction gammap>K+K-p. <i>Physical Review Letters</i> , 2006 , 97, 102001	7.4	12	
Photon beam asymmetry In the reaction E>p->pIfor E= 1.152 to 1.876 GeV. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 773, 112-120	4.2	11	
Cross sections for the β ->K*+ β and β ->K*+ β 0 reactions measured at CLAS. <i>Physical Review C</i> , 2013 , 87,	2.7	11	
Tensor polarization of the ? meson photoproduced at high t. <i>Physical Review C</i> , 2004 , 69,	2.7	11	
Exclusive photoproduction of D up to large values of Mandelstam variables s,t, and u with CLAS. <i>Physical Review C</i> , 2018 , 98,	2.7	10	
Exclusive Lelectroproduction at W>2 GeV with CLAS and transversity generalized parton distributions. <i>Physical Review C</i> , 2017 , 95,	2.7	10	
Search for baryon-number and lepton-number violating decays of hyperons using the CLAS detector at Jefferson Laboratory. <i>Physical Review D</i> , 2015 , 92,	4.9	10	
Publisher's Note: Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction \$\beta>?p [Phys. Rev. C 89, 055208 (2014)]. <i>Physical Review C</i> , 2014 , 90,	2.7	10	
Differential cross sections and polarization observables from CLAS K? photoproduction and the search for new N? states. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 771, 142-150	4.2	9	
Measurement of the Q 2 Dependence of the Deuteron Spin Structure Function g_{1} and its Moments at Low Q 2 with CLAS. <i>Physical Review Letters</i> , 2018 , 120, 062501	7.4	9	
Measurement of the helicity asymmetry E in ₺₦₵ photoproduction. <i>Physical Review C</i> , 2017 , 96,	2.7	9	
Discharge studies in micromegas detectors in a 150 GeV/c pion beam. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2011 , 659, 91-97	1.2	9	
Near-threshold photoproduction of ? mesons from deuterium. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2011 , 696, 338-342	4.2	9	
Hard exclusive pion electroproduction at backward angles with CLAS. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 780, 340-345	4.2	8	
Strangeness suppression of qq creation observed in exclusive reactions. <i>Physical Review Letters</i> , 2014 , 113, 152004	7.4	8	
	Review C, 2018, 98, Separated structure functions for exclusive K+land K+D electroproduction at 5.5 GeV measured with CLAS. Physical Review C, 2013, 87, Bayesian analysis of pentaquark signals from CLAS data. Physical Review Letters, 2008, 100, 052001 Search for Theta++ pentaquarks in the exclusive reaction gammap>K+K-p. Physical Review Letters, 2006, 97, 102001 Photon beam asymmetry lin the reaction B-p->plfor E= 1.152 to 1.876 (GeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 773, 112-120 Cross sections for the B->K*+land B->K*+D reactions measured at CLAS. Physical Review C, 2013, 87, Tensor polarization of the? meson photoproduced at high t. Physical Review C, 2004, 69, Exclusive photoproduction of D up to large values of Mandelstam variables s.t, and u with CLAS. Physical Review C, 2019, 98, Exclusive lelectroproduction at W>2 GeV with CLAS and transversity generalized parton distributions. Physical Review C, 2017, 95, Search for baryon-number and lepton-number violating decays of lhyperons using the CLAS detector at Jefferson Laboratory. Physical Review D, 2015, 92, Publisher's Note: Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction B-?p [Phys. Rev. C 89, 055208 (2014)]. Physical Review C, 2014, 90, Differential cross sections and polarization observables from CLAS K? photoproduction and the search for new N? states. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 771, 142-150 Measurement of the Pc(2) Dependence of the Deuteron Spin Structure Function g_(1) and its Moments at Low Q^(2) with CLAS. Physical Review Letters, 2018, 120, 062501 Measurement of the helicity asymmetry E in B-BD photoproduction. Physical Review C, 2017, 96, Discharge studies in micromegas detectors in a 150 GeV/c pion beam. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 659, 91-97 Near-thresh	Review C, 2018, 98, Separated structure functions for exclusive K+land K+D electroproduction at 5.5 GeV measured with CLAS. Physical Review C, 2013, 87, Bayesian analysis of pentaquark signals from CLAS data. Physical Review Letters, 2008, 100, 052001 Search for Theta++ pentaquarks in the exclusive reaction gammap>K+K-p. Physical Review Letters, 2006, 97, 102001 Photon beam asymmetry In the reaction B-p->plfor E= 1.152 to 1.876[GeV. Physics Letters, Section B-Nuclear, Elementary Particle and High-Energy Physics, 2017, 773, 112-120 Cross sections for the B->K*+land B->K*+D reactions measured at CLAS. Physical Review C, 2013, 87, Tensor polarization of the ? meson photoproduced at high t. Physical Review C, 2004, 69, Exclusive photoproduction of D up to large values of Mandelstam variables s.t, and u with CLAS. Physical Review C, 2018, 98, Exclusive letectroproduction at W-2 GeV with CLAS and transversity generalized parton distributions. Physical Review C, 2017, 95, Search for baryon-number and lepton-number violating decays of Ihyperons using the CLAS detector at Jefferson Laboratory. Physical Review D, 2015, 92, Publisher's Note: Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction B->rp (Phys. Rev. C 89, 055208 (2014)). Physical Review C, 2014, 90, Differential cross sections and polarization observables from CLAS K? photoproduction and the search for new N? states. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 771, 142-15. Measurement of the Q-\(^2\)2 Dependence of the Deuteron Spin Structure Function g_(1) and its Moments at Low Q-\(^2\)2 with CLAS. Physical Review Letters, Detectors and Associated Equipment, 2011, 659, 91-97 Near-threshold photoproduction of 7 mesons from deuterium. Physica Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 696, 338-342 Hard exclusive pion electroproduction at backward angles with CLAS. Physics Letters, Section B: Nuclear, Elementary Pa	Review C, 2018, 98, 27, 13 Separated structure functions for exclusive K+2nd K+D electroproduction at 5.5 GeV measured with CLAS. Physical Review C, 2013, 87, 27, 27, 28 Bayesian analysis of pentaquark signals from CLAS data. Physical Review Letters, 2008, 100, 052001 74, 13 Search for Theta++ pentaquarks in the exclusive reaction gammap—SK+K-p. Physical Review Letters, 2006, 97, 102001 74, 12 Photon beam asymmetry III the reaction B-p-piffor E= 1.152 to 1.876/GeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 773, 112-120 42 11 Cross sections for the B->K*+Eand B->K*+D reactions measured at CLAS. Physical Review C, 2013, 87, 11 Tensor polarization of the? meson photoproduced at high t. Physical Review C, 2004, 69, 2-7, 11 Exclusive photoproduction of D up to large values of Mandelstam variables s.t, and u with CLAS. Physical Review C, 2018, 98. Exclusive Electroproduction at W-2 GeV with CLAS and transversity generalized parton distributions. Physical Review C, 2017, 95, 10 Search for baryon-number and lepton-number violating decays of Dyperons using the CLAS detector at Jefferson Laboratory. Physical Review D, 2015, 92, 10 Publisher's Note: Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction B->rp [Phys. Rev. C 89, 055208 (2014)]. Physical Review C, 2014, 90, 2-7, 10 Differential cross sections and polarization observables from CLAS K? photoproduction and the search for new N² states. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 771, 142-150 Measurement of the Q^(2) with CLAS. Physical Review Letters, 2018, 120, 062501 7-4 9 Discharge studies in micromegas detectors in a 150 GeV/c pion beam. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 659, 91-97 Near-threshold photoproduction of 7 mesons from deuterium. Physics Letters, Section B: Nuclear, Elementary Particle and High-En

42	Branching ratio of the electromagnetic decay of the $\mathbb{B}(1385)$. <i>Physical Review D</i> , 2012 , 85,	4.9	8
41	Publisher Note: Photoproduction on the Proton for Photon Energies from 0.75 to 1.95 GeV [Phys. Rev. Lett. 89, 222002 (2002)]. <i>Physical Review Letters</i> , 2002 , 89,	7.4	8
40	Corrected Article: Exclusive electroproduction of Imesons at 4.2 GeV [Phys. Rev. C 63, 065205 (2001)]. <i>Physical Review C</i> , 2001 , 64,	2.7	7
39	Rosenbluth Separation of the 🛮 {0} Electroproduction Cross Section Off the Neutron. <i>Physical Review Letters</i> , 2017 , 118, 222002	7.4	7
38	Measurement of the beam asymmetry and the target asymmetry T in the photoproduction of mesons off the proton using CLAS at Jefferson Laboratory. <i>Physical Review C</i> , 2018 , 97,	2.7	6
37	Publisher's Note: Exclusive D electroproduction at W>2 GeV with CLAS [Phys. Rev. C 90, 025205 (2014)]. <i>Physical Review C</i> , 2014 , 90,	2.7	6
36	Measurement of the generalized form factors near threshold via m P->n m at high Q2. <i>Physical Review C</i> , 2012 , 85,	2.7	6
35	Measurement of the nuclear multiplicity ratio for . <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2011 , 706, 26-31	4.2	6
34	Origin and simulation of sparks in MPGD. <i>Journal of Instrumentation</i> , 2012 , 7, C06009-C06009	1	6
33	Measurements of the Lorentz angle with a Micromegas detector in high transverse magnetic fields. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010 , 612, 274-277	1.2	6
32	Ratios of N15/C12 and He4/C12 inclusive electroproduction cross sections in the nucleon resonance region. <i>Physical Review C</i> , 2008 , 78,	2.7	6
31	Measurement of target and double-spin asymmetries for the e p ->e \mathbb{H} (n) reaction in the nucleon resonance region at low Q2. <i>Physical Review C</i> , 2016 , 94,	2.7	6
30	Beam-target helicity asymmetry E in K0 and K0 photoproduction on the neutron. <i>Physical Review C</i> , 2018 , 98,	2.7	6
29	The readout system for the Clas12 Micromegas vertex tracker 2014 ,		5
28	Induced polarization of [11116) in kaon electroproduction. <i>Physical Review C</i> , 2014 , 90,	2.7	5
27	Publisher's Note: Beam asymmetry [for ⊞ and D photoproduction on the proton for photon energies from 1.102 to 1.862 GeV [Phys. Rev. C 88, 065203 (2013)]. <i>Physical Review C</i> , 2014 , 89,	2.7	5
26	Discharge studies in Micromegas detectors in low energy hadron beams. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2011 , 648, 174-179	1.2	5
25	Measurement of the nucleon structure function F2 in the nuclear medium and evaluation of its moments. <i>Nuclear Physics A</i> , 2010 , 845, 1-32	1.3	5

24	Double KS0 photoproduction off the proton at CLAS. Physical Review C, 2018, 97,	2.7	5
23	Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1 GeV2. II. ep->eDp. <i>Physical Review C</i> , 2017 , 95,	2.7	4
22	Target and beam-target spin asymmetries in exclusive ⊞ and Œlectroproduction with 1.6- to 5.7-GeV electrons. <i>Physical Review C</i> , 2016 , 94,	2.7	4
21	Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region E∄1.1☑.3 GeV. <i>Physical Review C</i> , 2015 , 91,	2.7	4
20	Survey of asymmetries in semi-exclusive electron scattering on 4He and 12C. <i>Nuclear Physics A</i> , 2005 , 748, 357-373	1.3	4
19	Photoproduction of K+KImeson pairs on the proton. <i>Physical Review D</i> , 2018 , 98,	4.9	4
18	Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS. <i>Physical Review C</i> , 2017 , 95,	2.7	3
17	Hard two-body photodisintegration of 3He. <i>Physical Review Letters</i> , 2013 , 110, 242301	7.4	3
16	Transverse polarization of ⊞(1189) in photoproduction on a hydrogen target in CLAS. <i>Physical Review C</i> , 2013 , 87,	2.7	3
15	Photodisintegration of He4 into p+t. <i>Physical Review C</i> , 2009 , 80,	2.7	3
15	Photodisintegration of He4 into p+t. <i>Physical Review C</i> , 2009 , 80, Publisher Note: Branching ratio of the electromagnetic decay of the $\mathbb{H}(1385)$ Phys. Rev. D 85, 052004 (2012). <i>Physical Review D</i> , 2012 , 85,	2.7 4·9	3
	Publisher Note: Branching ratio of the electromagnetic decay of the ⊞(1385) Phys. Rev. D 85,		
14	Publisher Note: Branching ratio of the electromagnetic decay of the ⊕(1385) Phys. Rev. D 85, 052004 (2012). <i>Physical Review D</i> , 2012 , 85, Measurement of the beam spin asymmetry of e->p->e?p? In the deep-inelastic regime with CLAS.	4.9	
14	Publisher Note: Branching ratio of the electromagnetic decay of the #(1385) Phys. Rev. D 85, 052004 (2012). <i>Physical Review D</i> , 2012 , 85, Measurement of the beam spin asymmetry of e->p->e?p? In the deep-inelastic regime with CLAS. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2019 , 789, 426-431 First measurement of Ipolarization in photoproduction. <i>Physics Letters, Section B: Nuclear</i> ,	4.9	3
14 13	Publisher Note: Branching ratio of the electromagnetic decay of the (1385) Phys. Rev. D 85, 052004 (2012). Physical Review D, 2012, 85, Measurement of the beam spin asymmetry of e->p->e?p? In the deep-inelastic regime with CLAS. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 789, 426-431 First measurement of [bolarization in photoproduction. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 783, 280-286 DSE inspired model for the pion's valence dressed-quark GPD. Journal of Physics: Conference Series,	4.9	2
14 13 12	Publisher Note: Branching ratio of the electromagnetic decay of the #(1385) Phys. Rev. D 85, 052004 (2012). Physical Review D, 2012, 85, Measurement of the beam spin asymmetry of e->p->e?p? In the deep-inelastic regime with CLAS. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 789, 426-431 First measurement of Ipolarization in photoproduction. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 783, 280-286 DSE inspired model for the pion's valence dressed-quark GPD. Journal of Physics: Conference Series, 2015, 631, 012062 Near-threshold neutral pion electroproduction at high momentum transfers and generalized form	4.9 4.2 4.2	2 2
14 13 12 11	Publisher Note: Branching ratio of the electromagnetic decay of the #(1385) Phys. Rev. D 85, 052004 (2012). Physical Review D, 2012, 85, Measurement of the beam spin asymmetry of e->p->e?p? In the deep-inelastic regime with CLAS. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 789, 426-431 First measurement of Ipolarization in photoproduction. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 783, 280-286 DSE inspired model for the pion's valence dressed-quark GPD. Journal of Physics: Conference Series, 2015, 631, 012062 Near-threshold neutral pion electroproduction at high momentum transfers and generalized form factors. Physical Review C, 2013, 87, Upper limits for the photoproduction cross section for the [1860] pentaquark state off the	4.9 4.2 4.2 0.3	3 2 2 2

6	On Deeply Virtual Compton Scattering at Next-to-Leading Order. <i>Few-Body Systems</i> , 2014 , 55, 339-349	1.6	1
5	Discharge rate measurements for Micromegas detectors in the presence of a longitudinal magnetic field. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2011 , 654, 135-139	1.2	1
4	Semi-inclusive D target and beam-target asymmetries from 6 GeV electron scattering with CLAS. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 782, 662-667	4.2	1
3	Next to leading order analysis of DVCS and TCS. <i>EPJ Web of Conferences</i> , 2014 , 66, 06016	0.3	0
2	Deep Exclusive Scattering and Generalized Parton Distributions: Experimental Review. <i>Nuclear Physics A</i> , 2005 , 755, 81-90	1.3	
1	DEEPLY VIRTUAL AND EXCLUSIVE PRODUCTION OF THE OMEGA MESON. <i>International Journal of Modern Physics A</i> , 2005 , 20, 1943-1946	1.2	