Sharon Paton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/972089/publications.pdf

Version: 2024-02-01

	840119		1058022	
15	365	11	14	
papers	citations	h-index	g-index	
15	15	15	624	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Human mulipotential mesenchymal/stromal stem cells are derived from a discrete subpopulation of STRO-1bright/CD34 /CD45 /glycophorin-A-bone marrow cells. Haematologica, 2007, 92, 1707-1708.	1.7	72
2	Heat Shock Protein-90 beta Is Expressed at the Surface of Multipotential Mesenchymal Precursor Cells: Generation of a Novel Monoclonal Antibody, STRO-4, With Specificity for Mesenchymal Precursor Cells From Human and Ovine Tissues. Stem Cells and Development, 2009, 18, 1253-1262.	1.1	70
3	Impact of Timing and Dose of Mesenchymal Stromal Cell Therapy in a Preclinical Model of Acute Myocardial Infarction. Journal of Cardiac Failure, 2013, 19, 342-353.	0.7	43
4	Comparative Assessment of the Osteoconductive Properties of Different BiomaterialsIn VivoSeeded with Human or Ovine Mesenchymal Stem/Stromal Cells. Tissue Engineering - Part A, 2010, 16, 3579-3587.	1.6	33
5	EphB4 Expressing Stromal Cells Exhibit an Enhanced Capacity for Hematopoietic Stem Cell Maintenance. Stem Cells, 2015, 33, 2838-2849.	1.4	29
6	Non-destructive, label free identification of cell cycle phase in cancer cells by multispectral microscopy of autofluorescence. BMC Cancer, 2019, 19, 1242.	1.1	22
7	Incremental benefits of repeated mesenchymal stromal cell administration compared with solitary intervention after myocardial infarction. Cytotherapy, 2014, 16, 460-470.	0.3	20
8	Loss of ephrinB1 in osteogenic progenitor cells impedes endochondral ossification and compromises bone strength integrity during skeletal development. Bone, 2016, 93, 12-21.	1.4	19
9	The osteoprogenitor-specific loss of ephrinB1 results in an osteoporotic phenotype affecting the balance between bone formation and resorption. Scientific Reports, 2018, 8, 12756.	1.6	15
10	Loss of EfnB1 in the osteogenic lineage compromises their capacity to support hematopoietic stem/progenitor cell maintenance. Experimental Hematology, 2019, 69, 43-53.	0.2	14
11	Ageing human bone marrow mesenchymal stem cells have depleted NAD(P)H and distinct multispectral autofluorescence. GeroScience, 2021, 43, 859-868.	2.1	11
12	Pentosan polysulfate binds to STRO-1+ mesenchymal progenitor cells, is internalized, and modifies gene expression: a novel approach of pre-programing stem cells for therapeutic application requiring their chondrogenesis. Stem Cell Research and Therapy, 2017, 8, 278.	2.4	8
13	Conditional knockout of ephrinB1 in osteogenic progenitors delays the process of endochondral ossification during fracture repair. Bone, 2020, 132, 115189.	1.4	8
14	Distinct Senescent Bone Marrow Microenvironment in Therapy-Related Myeloid Neoplasms. Blood, 2021, 138, 2585-2585.	0.6	1
15	Therapy-Related Myeloid Neoplasm Has a Distinct Pro-Inflammatory Bone Marrow Microenvironment and Delayed DNA Damage Repair. Blood, 2020, 136, 37-38.	0.6	0