
Richard Burgess

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9720393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What is in the black box? The discovery of the sigma factor and the subunit structure of E.Âcoli RNA polymerase. Journal of Biological Chemistry, 2021, 297, 101310.	3.4	2
2	A brief practical review of size exclusion chromatography: Rules of thumb, limitations, and troubleshooting. Protein Expression and Purification, 2018, 150, 81-85.	1.3	65
3	Gentle antibody-mimetic affinity chromatography with polyol-responsive nanoCLAMPs. Protein Expression and Purification, 2017, 134, 154-155.	1.3	0
4	A brief review of common grammatical and scientific errors seen in reviewing protein purification manuscripts for 25 years. Protein Expression and Purification, 2016, 120, 106-109.	1.3	4
5	Weak protein–protein interactions revealed by immiscible filtration assisted by surface tension. Analytical Biochemistry, 2014, 447, 133-140.	2.4	18
6	Key features of σ ^S required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15955-15960.	7.1	34
7	Production and characterization of monoclonal antibodies to estrogen-related receptor alpha (ERRα) and use in immunoaffinity chromatography. Protein Expression and Purification, 2012, 84, 47-58.	1.3	4
8	Expression and purification of full-length mouse CARM1 from transiently transfected HEK293T cells using HaloTag technology. Protein Expression and Purification, 2011, 76, 145-153.	1.3	24
9	The epitope for the polyol-responsive monoclonal antibody 8RB13 is in the flap-domain of the beta-subunit of bacterial RNA polymerase and can be used as an epitope tag for immunoaffinity chromatography. Protein Expression and Purification, 2011, 77, 26-33.	1.3	12
10	Artifact-inducing enrichment of ethylenediaminetetraacetic acid and ethyleneglycoltetraacetic acid on anion exchange resins. Analytical Biochemistry, 2011, 412, 34-39.	2.4	1
11	Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Research, 2011, 39, 2717-2726.	14.5	72
12	Promoter and regulon analysis of nitrogen assimilation factor, σ54, reveal alternative strategy for E. coli MG1655 flagellar biosynthesis. Nucleic Acids Research, 2010, 38, 1273-1283.	14.5	75
13	Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3146-3151.	7.1	63
14	An improved procedure for the purification of the Escherichia coli RNA polymerase ω subunit. Protein Expression and Purification, 2010, 71, 190-194.	1.3	0
15	Expression, purification, and refolding of active Nrf2 transcription factor fused to protein transduction TAT tag. Protein Expression and Purification, 2010, 74, 280-288.	1.3	8
16	Chapter 28 Identification, Production, and Use of Polyol-Responsive Monoclonal Antibodies for Immunoaffinity Chromatography. Methods in Enzymology, 2009, 463, 475-494.	1.0	14
17	Minimal Promoter Systems Reveal the Importance of Conserved Residues in the B-finger of Human Transcription Factor IIB. Journal of Biological Chemistry, 2009, 284, 24754-24766.	3.4	12

18 Preface. Methods in Enzymology, 2009, 463, xxv-xxvi.

1.0 3

#	Article	IF	CITATIONS
19	Large-scale Epstein–Barr virus EBNA1 protein purification. Protein Expression and Purification, 2009, 63, 128-133.	1.3	7
20	E. coli expression of a soluble, active single-chain antibody variable fragment containing a nuclear localization signal. Protein Expression and Purification, 2009, 66, 172-180.	1.3	12
21	Chapter 3 Use of Bioinformatics in Planning a Protein Purification. Methods in Enzymology, 2009, 463, 21-28.	1.0	7
22	Chapter 4 Preparing a Purification Summary Table. Methods in Enzymology, 2009, 463, 29-34.	1.0	13
23	Chapter 17 Refolding Solubilized Inclusion Body Proteins. Methods in Enzymology, 2009, 463, 259-282.	1.0	204
24	Chapter 20 Protein Precipitation Techniques. Methods in Enzymology, 2009, 463, 331-342.	1.0	142
25	Chapter 44 Important but Little Known (or Forgotten) Artifacts in Protein Biochemistry. Methods in Enzymology, 2009, 463, 813-820.	1.0	9
26	Chapter 32 Elution of Proteins from Gels. Methods in Enzymology, 2009, 463, 565-572.	1.0	22
27	Studying the Salt Dependence of the Binding of Ïf70 and Ïf32 to Core RNA Polymerase Using Luminescence Resonance Energy Transfer. PLoS ONE, 2009, 4, e6490.	2.5	12
28	Bacterial conjugation-based antimicrobial agents. Plasmid, 2008, 60, 38-44.	1.4	23
29	Adaptation in bacterial flagellar and motility systems: from regulon members to â€~foraging'-like behavior in E. coli. Nucleic Acids Research, 2007, 35, 4441-4452.	14.5	146
30	Immunoaffinity purification and characterization of RNA polymerase from Shewanella oneidensis. Protein Expression and Purification, 2007, 55, 23-30.	1.3	5
31	Microfluidic Based Platform for Characterization of Protein Interactions in Hydrogel Nanoenvironments. Analytical Chemistry, 2007, 79, 5322-5327.	6.5	38
32	LRET-Based HTS of a Small-Compound Library for Inhibitors of Bacterial RNA Polymerase. Assay and Drug Development Technologies, 2007, 5, 759-768.	1.2	12
33	Identification and characterization of the gene encoding the Acidobacterium capsulatum major sigma factor. Gene, 2006, 376, 144-151.	2.2	10
34	Expression and purification of a single-chain variable fragment antibody derived from a polyol-responsive monoclonal antibody. Protein Expression and Purification, 2006, 47, 82-92.	1.3	21
35	Overproduction in Escherichia coli and purification of Epstein–Barr virus EBNA-1. Protein Expression and Purification, 2006, 47, 434-440.	1.3	9
36	Homogeneous fluorescent assay for RNA polymerase. Analytical Biochemistry, 2005, 342, 206-213.	2.4	23

#	Article	IF	CITATIONS
37	The Global Transcriptional Response of Escherichia coli to Induced σ32 Protein Involves σ32 Regulon Activation Followed by Inactivation and Degradation of σ32 in Vivo. Journal of Biological Chemistry, 2005, 280, 17758-17768.	3.4	128
38	Holoenzyme Switching and Stochastic Release of Sigma Factors from RNA Polymerase In Vivo. Molecular Cell, 2005, 20, 357-366.	9.7	70
39	Identification of Sp2 as a Transcriptional Repressor of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 in Tumorigenesis. Cancer Research, 2004, 64, 3072-3078.	0.9	71
40	An epitope tag derived from human transcription factor IIB that reacts with a polyol-responsive monoclonal antibody. Protein Expression and Purification, 2004, 35, 147-155.	1.3	19
41	Antigen-binding properties of monoclonal antibodies reactive with human TATA-binding protein and use in immunoaffinity chromatography. Protein Expression and Purification, 2004, 36, 186-197.	1.3	9
42	A fast Western blot procedure improved for quantitative analysis by direct fluorescence labeling of primary antibodies. Journal of Immunological Methods, 2003, 277, 117-125.	1.4	17
43	Development of an epitope tag for the gentle purification of proteins by immunoaffinity chromatography: application to epitope-tagged green fluorescent protein. Analytical Biochemistry, 2003, 323, 171-179.	2.4	29
44	A cross-reactive polyol-responsive monoclonal antibody useful for isolation of core RNA polymerase from many bacterial species. Protein Expression and Purification, 2003, 31, 155-160.	1.3	18
45	Expression, Purification of, and Monoclonal Antibodies to σ Factors from Escherichia coli. Methods in Enzymology, 2003, 370, 181-192.	1.0	19
46	Luminescence Resonance Energy Transfer-Based High-Throughput Screening Assay for Inhibitors of Essential Protein-Protein Interactions in Bacterial RNA Polymerase. Applied and Environmental Microbiology, 2003, 69, 1492-1498.	3.1	39
47	Studying Sigma–Core Interactions in Escherichia coli RNA Polymerase by Electrophoretic Shift Assays and Luminescence Resonance Energy Transfer. Methods in Enzymology, 2003, 370, 192-205.	1.0	3
48	Conformational Flexibility in Ï,70 Region 2 during Transcription Initiation. Journal of Biological Chemistry, 2002, 277, 46433-46441.	3.4	12
49	Using Disulfide Bond Engineering To Study Conformational Changes in the β′260-309 Coiled-Coil Region of Escherichia coli RNA Polymerase during σ 70 Binding. Journal of Bacteriology, 2002, 184, 2634-2641.	2.2	14
50	Advances in gentle immunoaffinity chromatography. Current Opinion in Biotechnology, 2002, 13, 304-308.	6.6	90
51	On-column tris(2-carboxyethyl)phosphine reduction and IC5-maleimide labeling during purification of a RpoC fragment on a nickel–nitrilotriacetic acid Column. Analytical Biochemistry, 2002, 307, 368-374.	2.4	13
52	How sigma docks to RNA polymerase and what sigma does. Current Opinion in Microbiology, 2001, 4, 126-131.	5.1	138
53	Binding of the Initiation Factor σ70 to Core RNA Polymerase Is a Multistep Process. Molecular Cell, 2001, 8, 21-31.	9.7	61
54	A Coiled-Coil from the RNA Polymerase β′ Subunit Allosterically Induces Selective Nontemplate Strand Binding by σ70. Cell, 2001, 105, 935-944.	28.9	88

#	Article	IF	CITATIONS
55	Promoter recognition and discrimination by EsigmaS RNA polymerase. Molecular Microbiology, 2001, 42, 939-954.	2.5	160
56	RNA Polymerases from Bacillus subtilisand Escherichia coli Differ in Recognition of Regulatory Signals In Vitro. Journal of Bacteriology, 2000, 182, 6027-6035.	2.2	93
57	Mutational Analysis of β′260–309, a Ï,70 Binding Site Located on Escherichia coliCore RNA Polymerase. Journal of Biological Chemistry, 2000, 275, 23113-23119.	3.4	64
58	Rapid Purification of His6-Tagged Bacillus subtilis Core RNA Polymerase. Protein Expression and Purification, 2000, 19, 350-354.	1.3	32
59	Architecture of RNA Polymerase II and Implications for the Transcription Mechanism. Science, 2000, 288, 640-649.	12.6	570
60	[11] Mapping protein-protein interaction domains using ordered fragment ladder far-Western analysis of hexahistidine-tagged fusion proteins. Methods in Enzymology, 2000, 328, 141-157.	1.0	42
61	Immunoaffinity Purification of the RAP30 Subunit of Human Transcription Factor IIF. Protein Expression and Purification, 1999, 17, 260-266.	1.3	10
62	Yeast RNA Polymerase II at 5 Ã Resolution. Cell, 1999, 98, 799-810.	28.9	124
63	Localization of a Ï,70 Binding Site on the N Terminus of the Escherichia coli RNA Polymerase β′ Subunit. Journal of Biological Chemistry, 1998, 273, 31381-31387.	3.4	108
64	Rpb3, Stoichiometry and Sequence Determinants of the Assembly into Yeast RNA Polymerase II in Vivo. Journal of Biological Chemistry, 1998, 273, 10827-10830.	3.4	19
65	Interaction of Escherichia coli Â70with Core RNA Polymerase. Cold Spring Harbor Symposia on Quantitative Biology, 1998, 63, 277-288.	1.1	8
66	Roles of DnaK and RpoS in Starvation-Induced Thermotolerance of <i>Escherichia coli</i> . Journal of Bacteriology, 1998, 180, 846-854.	2.2	76
67	Identification of the epitope for a highly cross-reactive monoclonal antibody on the major sigma factor of bacterial RNA polymerase. Journal of Bacteriology, 1997, 179, 1404-1408.	2.2	20
68	Overproduction and Purification of lf S, theEscherichia coliStationary Phase Specific Sigma Transcription Factor. Protein Expression and Purification, 1996, 8, 17-22.	1.3	12
69	A Novel Collection of Accessory Factors Associated with Yeast RNA Polymerase II. Protein Expression and Purification, 1996, 8, 85-90.	1.3	94
70	[12] Purification of overproduced Escherichia coli RNA polymerase σ factors by solubilizing inclusion bodies and refolding from Sarkosyl. Methods in Enzymology, 1996, 273, 145-149.	1.0	91
71	Immunoaffinity purification of RNA polymerase II and transcription factors using polyol-responsive monoclonal antibodies. Methods in Enzymology, 1996, 274, 513-526.	1.0	27
72	Immobilization of manganese peroxidase fromLentinula edodes on alkylaminated emphazeTM AB 1 polymer for generation of Mn3+ as an oxidizing agent. Applied Biochemistry and Biotechnology, 1996, 60, 1-17.	2.9	15

#	Article	IF	CITATIONS
73	Single-Step Synthesis and Characterization of Biotinylated Nitrilotriacetic Acid, a Unique Reagent for the Detection of Histidine-Tagged Proteins Immobilized on Nitrocellulose. Analytical Biochemistry, 1996, 236, 101-106.	2.4	20
74	Epitope Mapping Using Histidine-Tagged Protein Fragments: Application toEscherichia coliRNA Polymerase If70. Analytical Biochemistry, 1996, 241, 173-179.	2.4	21
75	The leucine-responsive regulatory protein (Lrp) acts as a specific repressor for ?s-dependent transcription of the Escherichia coli aidB gene. Molecular Microbiology, 1996, 20, 947-955.	2.5	36
76	Wisconsin-grown biotechnology. Nature Biotechnology, 1996, 14, 965-966.	17.5	0
77	Use of asymmetric PCR to generate long primers and single-stranded DNA for incorporating cross-linking analogs into specific sites in a DNA probe Genome Research, 1996, 6, 886-892.	5.5	26
78	Immobilization of manganese peroxidase fromLentinula edodes on azlactone-functional polymers and generation of Mn3+ by the enzyme-polymer complex. Applied Biochemistry and Biotechnology, 1995, 55, 55-73.	2.9	18
79	Accessibility of Epitopes on Human Transcription Factor IIB in the Native Protein and in a Complex with DNA. Journal of Biological Chemistry, 1995, 270, 4735-4740.	3.4	17
80	An Overview of a Feasibility Study for the Production of Industrial Enzymes in Transgenic Alfalfaa. Annals of the New York Academy of Sciences, 1994, 721, 234-244.	3.8	74
81	Purification of Recombinant Human Transcription Factor IIB by Immunoaffinity Chromatography. Protein Expression and Purification, 1994, 5, 468-475.	1.3	20
82	Overproduction and Purification of Ï f 32, the Escherichia coli Heat Shock Transcription Factor. Protein Expression and Purification, 1993, 4, 425-433.	1.3	44
83	Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1453-1457.	7.1	179
84	[1] Use of polyethyleneimine in purification of DNA-binding proteins. Methods in Enzymology, 1991, 208, 3-10.	1.0	95
85	The omega subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. Journal of Bacteriology, 1991, 173, 3901-3903.	2.2	72
86	Purification and lipid-layer crystallization of yeast RNA polymerase II Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2122-2126.	7.1	110
87	Cloning and in vivo and in vitro regulation of cyclic AMP-dependent carbon starvation genes from Escherichia coli. Journal of Bacteriology, 1990, 172, 3813-3820.	2.2	48
88	Characteristics and N-terminal amino acid sequence of a manganese peroxidase purified from Lentinula edodes cultures grown on a commercial wood substrate. Applied Microbiology and Biotechnology, 1990, 33, 359-365.	3.6	93
89	Characterization of a major xylanase purified from Lentinula edodes cultures grown on a commercial solid lignocellulosic substrate. Applied Microbiology and Biotechnology, 1990, 33, 226.	3.6	26
90	Identification of a heat shock promoter in the topA gene of Escherichia coli. Journal of Bacteriology, 1990, 172, 6871-6874.	2.2	34

#	Article	IF	CITATIONS
91	The human U1 snRNA promoter correctly initiates transcription in vitro and is activated by PSE1 Genes and Development, 1990, 4, 2048-2060.	5.9	51
92	Overproduction and purification of the ω subunit of Escherichia coli RNA polymerase. Protein Expression and Purification, 1990, 1, 81-86.	1.3	32
93	rpoZ, encoding the omega subunit of Escherichia coli RNA polymerase, is in the same operon as spoT. Journal of Bacteriology, 1989, 171, 1271-1277.	2.2	64
94	[30] Purification of Xenopus egg nucleoplasmin and its use in chromatin assembly in Vitro. Methods in Enzymology, 1989, 170, 612-630.	1.0	23
95	Manganese, Mn-dependent peroxidases, and the biodegradation of lignin. Biochemical and Biophysical Research Communications, 1988, 157, 992-999.	2.1	113
96	Bacteriophage T7 late promoters with point mutations: quantitative footprinting andin vivoexpression. Nucleic Acids Research, 1988, 16, 4511-4524.	14.5	48
97	Rapid response to osmotic upshift by osmoregulated genes in Escherichia coli and Salmonella typhimurium. Journal of Bacteriology, 1988, 170, 534-539.	2.2	60
98	Construction of bacteriophage T7 late promoters with point mutations and characterization byin vitrotranscription properties. Nucleic Acids Research, 1987, 15, 5413-5432.	14.5	69
99	The cloning and sequence of the gene encoding the omega (ω) subunit of Escherichia coli RNA polymerase. Gene, 1986, 48, 33-40.	2.2	35
100	Sigma factors fromE. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. Nucleic Acids Research, 1986, 14, 6745-6763.	14.5	497
101	PEPPLOT, a protein secondary structure analysis program for the UWGCG sequence analysis software package. Nucleic Acids Research, 1986, 14, 327-334.	14.5	74
102	Temperature dependence of the rate constants of the Escherichia coli RNA polymerase-λPR promoter interaction. Journal of Molecular Biology, 1985, 184, 441-453.	4.2	177
103	Nucleotide sequence of the rpsU-dnaG-rpoD operon from Salmonella typhimurium and a comparison of this sequence with the homologous operon of Escherichia coli. Gene, 1985, 40, 67-78.	2.2	55
104	Stringent response in Escherichia coli induces expression of heat shock proteins. Journal of Molecular Biology, 1985, 186, 357-365.	4.2	118
105	Nucleotide sequence preference at rat liver and wheat germ type 1 DNA topoisomerase breakage sites in duplex SV40 DNA. Nucleic Acids Research, 1984, 12, 3097-3114.	14.5	238
106	Effects of the mutant sigma allele rpoD800 on the synthesis of specific macromolecular components of the Escherichia coli K12 cell. Journal of Molecular Biology, 1984, 172, 283-300.	4.2	36
107	Kinetics and mechanism of the interaction of Escherichia coli RNA polymerase with the λPR promoter. Journal of Molecular Biology, 1984, 176, 495-522.	4.2	156
108	Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of E. coli RNA polymerase. Cell, 1984, 38, 371-381.	28.9	163

#	Article	lF	CITATIONS
109	The operen that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Cell, 1983, 32, 335-349.	28.9	267
110	Mutations in the Lon gene of E. coli K12 phenotypically suppress a mutation in the sigma subunit of RNA polymerase. Cell, 1983, 32, 151-159.	28.9	89
111	Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene, 1983, 26, 109-118.	2.2	171
112	Overproduction of Escherichia coli NusA protein. Gene, 1983, 26, 11-18.	2.2	15
113	5 Eukaryotic RNA Polymerases. The Enzymes, 1982, 15, 109-153.	1.7	52
114	Transcription of a gene for human U1 small nuclear RNA. Cell, 1982, 29, 265-274.	28.9	185
115	Variables affecting the selectivity and efficiency of retention of DNA fragments by E. coli RNA polymerase in the nitrocellulose-filter-binding assay. Gene, 1981, 13, 75-87.	2.2	34
116	The nudeotide sequence of the cloned rpoD gene for the RNA polymerase sigma subunit from E. coil K12. Nucleic Acids Research, 1981, 9, 2889-2903.	14.5	269
117	A new mutation rpoD800, affecting the sigma subunit of E. coli RNA polymerase is allelic to two other sigma mutants. Molecular Genetics and Genomics, 1980, 177, 277-282.	2.4	42
118	Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: Results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Analytical Biochemistry, 1980, 109, 76-86.	2.4	1,344
119	Altered chemical properties in three mutants of E. coli RNA polymerase sigma subunit. Molecular Genetics and Genomics, 1979, 175, 251-257.	2.4	16
120	Escherichia coli RNA polymerase binding and initiation of transcription on fragments of ĥrifd18 DNA containing promoters for ĥ genes and for rrnB, tufB, rplK,A, rplJ,L, and rpoB,C genes. Gene, 1979, 6, 331-365.	2.2	57
121	Isolation and characterization of transducing phage coding for sigma subunit of Escherichia coli RNA polymerase Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 5789-5793.	7.1	22
122	Mutation affecting thermostability of sigma subunit of Escherichia coli RNA polymerase lies near the dnaG locus at about 66 min on the E. coli genetic map Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 427-431.	7.1	48
123	RNA polymerase II from wheat germ contains tightly bound zinc. Biochemical and Biophysical Research Communications, 1977, 74, 1031-1038.	2.1	28
124	Templates for eukaryotic RNA polymerase II: Artefacts can produce an apparent preference for denatured DNA over native DNA. Analytical Biochemistry, 1977, 79, 181-189.	2.4	16
125	Quantitation of RNA polymerase subunits in Escherichia coli during exponential growth and after bacteriophage T4 infection. Molecular Genetics and Genomics, 1976, 143, 291-295.	2.4	58
126	Biosynthesis of Escherichia coli RNA polymerase subunits upon release of rifampicin inhibition. Molecular Genetics and Genomics, 1976, 143, 297-299.	2.4	11

#	Article	IF	CITATIONS
127	Identification of a gene for the alpha-subunit of RNA polymerase at the str-spc region of the Escherichia coli chromosome Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 5036-5040.	7.1	113
128	Identification of two copies of the gene for the elongation factor EF–Tu in E. Coli. Nature, 1975, 257, 458-462.	27.8	287
129	Nuclear phosphoproteins of Physarum polycephalum. Archives of Biochemistry and Biophysics, 1975, 170, 49-60.	3.0	17
130	Purification and Properties of Two RNA Polymerases from Physarum polycephalum. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71, 1174-1177.	7.1	19
131	Inhibition of RNA Polymerase by Streptolydigin. Nature: New Biology, 1971, 230, 197-200.	4.5	93
132	[42] Purification of the RNA polymerase sigma factor. Methods in Enzymology, 1971, 21, 500-506.	1.0	39
133	Rna Polymerase. Annual Review of Biochemistry, 1971, 40, 711-740.	11.1	244
134	Factor Stimulating Transcription by RNA Polymerase. Nature, 1969, 221, 43-46.	27.8	966
135	Cyclic Re-use of the RNA Polymerase Sigma Factor. Nature, 1969, 222, 537-540.	27.8	407