Haozhe Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9718868/publications.pdf

Version: 2024-02-01

257101 344852 1,931 37 24 36 h-index citations g-index papers 38 38 38 3169 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Polymeric Micelles: Nanocarriers for Cancer-Targeted Drug Delivery. AAPS PharmSciTech, 2014, 15, 862-871.	1.5	270
2	Anisamide-targeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells. International Journal of Cancer, 2004, 112, 693-700.	2.3	244
3	An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nature Communications, 2016, 7, 13443.	5. 8	156
4	Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. Biomaterials, 2015, 67, 104-114.	5.7	111
5	Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. Journal of Controlled Release, 2017, 258, 43-55.	4.8	95
6	PEG-derivatized embelin as a nanomicellar carrier for delivery of paclitaxel to breast and prostate cancers. Biomaterials, 2013, 34, 1591-1600.	5.7	93
7	Nonviral Gene Therapy. Current Gene Therapy, 2001, 1, 201-226.	0.9	81
8	The self-assembling camptothecin-tocopherol prodrug: An effective approach for formulating camptothecin. Biomaterials, 2015, 62, 176-187.	5.7	61
9	Inhibition of Endothelin-1-Mediated Contraction of Hepatic Stellate Cells by FXR Ligand. PLoS ONE, 2010, 5, e13955.	1.1	58
10	An improved d-α-tocopherol-based nanocarrier for targeted delivery of doxorubicin with reversal of multidrug resistance. Journal of Controlled Release, 2014, 196, 272-286.	4.8	57
11	MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase. Biochemical and Biophysical Research Communications, 2014, 446, 940-944.	1.0	55
12	A PEG-Fmoc conjugate as a nanocarrier for paclitaxel. Biomaterials, 2014, 35, 7146-7156.	5.7	52
13	Dual functional immunostimulatory polymeric prodrug carrier with pendent indoximod for enhanced cancer immunochemotherapy. Acta Biomaterialia, 2019, 90, 300-313.	4.1	50
14	Anti-fibrotic effect of thymoquinone on hepatic stellate cells. Phytomedicine, 2014, 21, 254-260.	2.3	38
15	Creatine based polymer for codelivery of bioengineered MicroRNA and chemodrugs against breast cancer lung metastasis. Biomaterials, 2019, 210, 25-40.	5.7	36
16	Tumor size-dependent abscopal effect of polydopamine-coated all-in-one nanoparticles for immunochemo-photothermal therapy of early- and late-stage metastatic cancer. Biomaterials, 2021, 269, 120629.	5.7	34
17	A prodrug micellar carrier assembled from polymers with pendant farnesyl thiosalicylic acid moieties for improved delivery of paclitaxel. Acta Biomaterialia, 2016, 43, 282-291.	4.1	33
18	A multi-functional polymeric carrier for simultaneous positron emission tomography imaging and combination therapy. Acta Biomaterialia, 2018, 75, 312-322.	4.1	30

#	Article	IF	CITATIONS
19	Triple drugs co-delivered by a small gemcitabine-based carrier for pancreatic cancer immunochemotherapy. Acta Biomaterialia, 2020, 106, 289-300.	4.1	29
20	Co-delivery of 2-Deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer. Acta Biomaterialia, 2020, 105, 239-252.	4.1	29
21	Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: Dual targeting of tumor cells and tumor-associated macrophages. Acta Pharmaceutica Sinica B, 2022, 12, 1148-1162.	5.7	29
22	Targeted codelivery of doxorubicin and IL-36γ expression plasmid for an optimal chemo-gene combination therapy against cancer lung metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 129-141.	1.7	28
23	Targeted Delivery of Curcumin to Tumors via PEG-Derivatized FTS-Based Micellar System. AAPS Journal, 2014, 16, 600-608.	2.2	27
24	Intraoral Mitochondrial-Targeted GS-Nitroxide, JP4-039, Radioprotects Normal Tissue in Tumor-Bearing Radiosensitive Fancd2–/– (C57BL/6) Mice. Radiation Research, 2016, 185, 134.	0.7	27
25	Design and Evaluation of a PEGylated Lipopeptide Equipped with Drug-Interactive Motifs as an Improved Drug Carrier. AAPS Journal, 2014, 16, 114-124.	2.2	25
26	Pendant HDAC inhibitor SAHA derivatised polymer as a novel prodrug micellar carrier for anticancer drugs. Journal of Drug Targeting, 2018, 26, 448-457.	2.1	25
27	High Loading of Hydrophobic and Hydrophilic Agents via Small Immunostimulatory Carrier for Enhanced Tumor Penetration and Combinational Therapy. Theranostics, 2020, 10, 1136-1150.	4.6	24
28	Targeted delivery of antisense oligodeoxynucleotides to folate receptor-overexpressing tumor cells. Journal of Controlled Release, 2004, 95, 321-331.	4.8	23
29	Cortex Mori Radicis extract attenuates myocardial damages in diabetic rats by regulating ERS. Biomedicine and Pharmacotherapy, 2017, 90, 777-785.	2.5	20
30	Targeted Delivery of Nucleic Acid-Based Therapeutics to the Pulmonary Circulation. AAPS Journal, 2009, 11, 23-30.	2.2	17
31	Fmoc-Conjugated PEG-Vitamin E2 Micelles for Tumor-Targeted Delivery of Paclitaxel: Enhanced Drug-Carrier Interaction and Loading Capacity. AAPS Journal, 2014, 16, 1282-1291.	2.2	17
32	A novel immunochemotherapy based on targeting of cyclooxygenase and induction of immunogenic cell death. Biomaterials, 2021, 270, 120708.	5.7	14
33	Metformin-conjugated micellar system with intratumoral pH responsive de-shielding for co-delivery of doxorubicin and nucleic acid. Biochemical Pharmacology, 2021, 189, 114453.	2.0	13
34	Characterization of Spherulites as a Lipidic Carrier for Low and High Molecular Weight Agents. Pharmaceutical Research, 2013, 30, 1525-1535.	1.7	12
35	Novel glucosylceramide synthase inhibitor based prodrug copolymer micelles for delivery of anticancer agents. Journal of Controlled Release, 2018, 288, 212-226.	4.8	10
36	Lipid-mediated delivery of peptide nucleic acids to pulmonary endothelium. Biochemical and Biophysical Research Communications, 2003, 302, 6-11.	1.0	8

#	Article	IF	CITATIONS
37	Reply to: "miR-122 expression is not regulated during activation of hepatic stellate cells― Journal of Hepatology, 2016, 65, 868.	1.8	O