Marta Dziedzicka-Wasylewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/971823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing the ligand-binding pocket of recombinant β-lactoglobulin: Calorimetric and spectroscopic studies. Biophysical Chemistry, 2022, 283, 106770.	1.5	1
2	Pro-cognitive effect of acute imipramine administration correlates with direct interaction of BDNF with its receptor, Trk 2 . Brain Research, 2022, 1789, 147948.	1.1	1
3	Dopamine D2 and Serotonin 5-HT1A Dimeric Receptor-Binding Monomeric Antibody scFv as a Potential Ligand for Carrying Drugs Targeting Selected Areas of the Brain. Biomolecules, 2022, 12, 749.	1.8	2
4	Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics, 2021, 13, 191.	2.0	34
5	Proteome Analysis of PC12 Cells Reveals Alterations in Translation Regulation and Actin Signaling Induced by Clozapine. Neurochemical Research, 2021, 46, 2097-2111.	1.6	1
6	What Do the Animal Studies of Stress Resilience Teach Us?. Cells, 2021, 10, 1630.	1.8	9
7	MicroRNA Let-7e in the Mouse Prefrontal Cortex Differentiates Restraint-Stress-Resilient Genotypes from Susceptible Genotype. International Journal of Molecular Sciences, 2021, 22, 9439.	1.8	9
8	Can di-4-ANEPPDHQ reveal the structural differences between nanodiscs and liposomes?. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183649.	1.4	1
9	Identification of Molecular Markers of Clozapine Action in Ketamine-Induced Cognitive Impairment: A GPCR Signaling PathwayFinder Study. International Journal of Molecular Sciences, 2021, 22, 12203.	1.8	3
10	Restraint Stress in Mice Alters Set of 25 miRNAs Which Regulate Stress- and Depression-Related mRNAs. International Journal of Molecular Sciences, 2020, 21, 9469.	1.8	8
11	The Gαi protein subclass selectivity to the dopamine D2 receptor is also decided by their location at the cell membrane. Cell Communication and Signaling, 2020, 18, 189.	2.7	11
12	Time-course of changes in key catecholaminergic receptors and trophic systems in rat brain after antidepressant administration. Neurochemistry International, 2020, 141, 104885.	1.9	8
13	The functional cooperation of 5-HT1A and mGlu4R in HEK-293 cell line. Pharmacological Reports, 2020, 72, 1358-1369.	1.5	2
14	Genetic variants in dopamine receptors influence on heterodimerization in the context of antipsychotic drug action. Progress in Molecular Biology and Translational Science, 2020, 169, 279-296.	0.9	3
15	Serum Level of miR-1 and miR-155 as Potential Biomarkers of Stress-Resilience of NET-KO and SWR/J Mice. Cells, 2020, 9, 917.	1.8	11
16	The effect of D380Y pathogenic mutation in human Yin Yang 1 on the protein's structure and function. Acta Biochimica Polonica, 2020, 67, 73-77.	0.3	3
17	Encapsulation of clozapine into polycaprolactone nanoparticles as a promising strategy of the novel nanoformulation of the active compound. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	9
18	Gγ and Gα Identity Dictate a G-Protein Heterotrimer Plasma Membrane Targeting. Cells, 2019, 8, 1246.	1.8	11

#	Article	IF	CITATIONS
19	The transcription factor YY 2 has less momentous properties of an intrinsically disordered protein than its paralog YY 1. FEBS Letters, 2019, 593, 1787-1798.	1.3	7
20	Clozapine administered repeatedly following pretreatment with ketamine enhances dopamine D2 receptors in the dopamine mesolimbic pathway in mice brain. Neuroscience Letters, 2019, 707, 134292.	1.0	5
21	Resilient Phenotype in Chronic Mild Stress Paradigm Is Associated with Altered Expression Levels of miR-18a-5p and Serotonin 5-HT1a Receptor in Dorsal Part of the Hippocampus. Molecular Neurobiology, 2019, 56, 7680-7693.	1.9	17
22	NET-KO mice as a stress-resistant model–miRNAs studies. Pharmacological Reports, 2019, 71, 1315.	1.5	0
23	Isolation stress impacts Met-enkephalin in the hypothalamo-pituitary-adrenocortical axis in growing Polish Mountain sheep: a possible role of the opioids in modulation of HPA axis. Stress, 2019, 22, 256-264.	0.8	2
24	Understanding GPCR dimerization. Methods in Cell Biology, 2019, 149, 155-178.	0.5	19
25	Improved cytotoxicity of novel TRAIL variants produced as recombinant fusion proteins. Protein Engineering, Design and Selection, 2018, 31, 37-46.	1.0	1
26	Regulation of somatostatin receptor 2 in the context of antidepressant treatment response in chronic mild stress in rat. Psychopharmacology, 2018, 235, 2137-2149.	1.5	11
27	Chronic administration of clozapine increases the level of serotonin 5-HT1A receptor heterodimerisation with 5-HT2A or D2 receptors in the mouse cortex. European Neuropsychopharmacology, 2018, 28, S7-S8.	0.3	0
28	Paroxetine and Low-dose Risperidone Induce Serotonin 5-HT1A and Dopamine D2 Receptor Heteromerization in the Mouse Prefrontal Cortex. Neuroscience, 2018, 377, 184-196.	1.1	12
29	Changes in the expression of metabotropic glutamate receptor 5 (mGluR5) in a ketamine-based animal model of schizophrenia. Schizophrenia Research, 2018, 192, 423-430.	1.1	10
30	Siteâ€directed fluorescence labeling of intrinsically disordered region of human transcription factor YY1: The inhibitory effect of zinc ions. Protein Science, 2018, 27, 390-401.	3.1	2
31	Effects of imipramine on cytokines panel in the rats serum during the drug treatment and discontinuation. Neurochemistry International, 2018, 113, 85-91.	1.9	3
32	Behavioral response to imipramine under chronic mild stress corresponds with increase of mRNA encoding somatostatin receptors sst2 and sst4 expression in medial habenular nucleus. Neurochemistry International, 2018, 121, 108-113.	1.9	2
33	Repeated Clozapine Increases the Level of Serotonin 5-HT1AR Heterodimerization with 5-HT2A or Dopamine D2 Receptors in the Mouse Cortex. Frontiers in Molecular Neuroscience, 2018, 11, 40.	1.4	27
34	Substrate specificity of human MCPIP1 endoribonuclease. Scientific Reports, 2018, 8, 7381.	1.6	32
35	Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor. Pharmacological Reports, 2017, 69, 235-241.	1.5	13
36	Effect of clozapine on ketamine-induced deficits in attentional set shift task in mice. Psychopharmacology, 2017, 234, 2103-2112.	1.5	22

#	Article	IF	CITATIONS
37	Basal prolactin levels in rat plasma correlates with response to antidepressant treatment in animal model of depression. Neuroscience Letters, 2017, 647, 147-152.	1.0	9
38	Sulpiride, Amisulpride, Thioridazine, and Olanzapine: Interaction with Model Membranes. Thermodynamic and Structural Aspects. ACS Chemical Neuroscience, 2017, 8, 1543-1553.	1.7	4
39	Antidepressants promote formation of heterocomplexes of dopamine D2 and somatostatin subtype 5 receptors in the mouse striatum. Brain Research Bulletin, 2017, 135, 92-97.	1.4	8
40	The interaction of clozapine loaded nanocapsules with the hCMEC/D3 cells – In vitro model of blood brain barrier. Colloids and Surfaces B: Biointerfaces, 2017, 159, 200-210.	2.5	17
41	Reciprocal MicroRNA Expression in Mesocortical Circuit and Its Interplay with Serotonin Transporter Define Resilient Rats in the Chronic Mild Stress. Molecular Neurobiology, 2017, 54, 5741-5751.	1.9	33
42	Impact of antipsychotic drugs on neuronal model cells proteome. European Neuropsychopharmacology, 2017, 27, S664-S665.	0.3	0
43	Corticotrophin Releasing Hormone Modulates Morphine Effect on the Met-Enkephalin Activity in the Hypothalamic-Pituitary-Adrenal Axis in Lambs. Folia Biologica, 2017, 65, 199-212.	0.1	2
44	The role of cholesterol and sphingolipids in the dopamine D 1 receptor and G protein distribution in the plasma membrane. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1775-1786.	1.2	13
45	Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology, 2016, 233, 255-266.	1.5	26
46	Dopamine D ₂ and serotonin 5â€ <scp>HT</scp> _{1A} receptor interaction in the context of the effects of antipsychotics – <i>inÂvitro</i> studies. Journal of Neurochemistry, 2016, 137, 549-560.	2.1	52
47	Optimized procedure of extraction, purification and proteomic analysis of nuclear proteins from mouse brain. Journal of Neuroscience Methods, 2016, 261, 1-9.	1.3	12
48	Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress – An animal model of depression. European Neuropsychopharmacology, 2016, 26, 23-36.	0.3	37
49	Encapsulation of clozapine in polymeric nanocapsules and its biological effects. Colloids and Surfaces B: Biointerfaces, 2016, 140, 342-352.	2.5	32
50	Stathmin reduction and cytoskeleton rearrangement in rat nucleus accumbens in response to clozapine and risperidone treatment – Comparative proteomic study. Neuroscience, 2016, 316, 63-81.	1.1	10
51	Proteomic and bioinformatic analysis of a nuclear intrinsically disordered proteome. Journal of Proteomics, 2016, 130, 76-84.	1.2	25
52	In vitro fluorescence studies of transcription factor IIB-DNA interaction. Acta Biochimica Polonica, 2015, 62, 413-421.	0.3	1
53	Life-long norepinephrine transporter (NET) knock-out leads to the increase in the NET mRNA in brain regions rich in norepinephrine terminals. European Neuropsychopharmacology, 2015, 25, 1099-1108.	0.3	1
54	Effect of desipramine on gene expression in the mouse frontal cortex – Microarray study. Pharmacological Reports, 2015, 67, 345-348.	1.5	3

4

#	Article	IF	CITATIONS
55	The Effect of CRH, Dexamethasone and Naltrexone on the Mu, Delta and Kappa Opioid Receptor Agonist Binding in Lamb Hypothalamic-Pituitary-Adrenal Axis. Folia Biologica, 2015, 63, 187-193.	0.1	8
56	New insights into the model of dopamine D1 receptor and G-proteins interactions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 594-603.	1.9	12
57	Biocompatible Polymeric Nanoparticles as Promising Candidates for Drug Delivery. Langmuir, 2015, 31, 6415-6425.	1.6	47
58	Intrinsic disorder of human <scp>Y</scp> in <scp>Y</scp> ang 1 protein. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1284-1296.	1.5	21
59	Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone. Journal of Neurochemistry, 2015, 132, 657-676.	2.1	30
60	Norepinephrine transporter knock-out alters expression of the genes connected with antidepressant drugs action. Brain Research, 2015, 1594, 284-292.	1.1	5
61	Dopamine D1 and D2 Receptors in Chronic Mild Stress: Analysis of Dynamic Receptor Changes in an Animal Model of Depression Using In Situ Hybridization and Autoradiography. Neuromethods, 2015, , 355-375.	0.2	3
62	Prolactin and its receptors in the chronic mild stress rat model of depression. Brain Research, 2014, 1555, 48-59.	1.1	27
63	Differential stress response in rats subjected to chronic mild stress is accompanied by changes in CRH-family gene expression at the pituitary level. Peptides, 2014, 61, 98-106.	1.2	14
64	Mesolimbic dopamine D2 receptor plasticity contributes to stress resilience in rats subjected to chronic mild stress. Psychopharmacology, 2013, 227, 583-593.	1.5	48
65	Involvement of prolactin and somatostatin in depression and the mechanism of action of antidepressant drugs. Pharmacological Reports, 2013, 65, 1640-1646.	1.5	28
66	Potential role of G protein-coupled receptor (GPCR) heterodimerization in neuropsychiatric disorders: A focus on depression. Pharmacological Reports, 2013, 65, 1498-1505.	1.5	14
67	Binding of 18-carbon unsaturated fatty acids to bovine β-lactoglobulin—Structural and thermodynamic studies. International Journal of Biological Macromolecules, 2013, 57, 226-231.	3.6	58
68	The differences in binding 12â€carbon aliphatic ligands by bovine βâ€lactoglobulin isoform A and B studied by isothermal titration calorimetry and Xâ€ray crystallography. Journal of Molecular Recognition, 2013, 26, 357-367.	1.1	31
69	A Biophysical Approach for the Study of Dopamine Receptor Oligomerization. Methods in Molecular Biology, 2013, 964, 79-94.	0.4	1
70	Antidepressant drugs promote the heterodimerization of the dopamine D2 and somatostatin Sst5 receptors – fluorescence in vitro studies. Pharmacological Reports, 2012, 64, 1253-1258.	1.5	9
71	Structural and thermodynamic studies of binding saturated fatty acids to bovine β-lactoglobulin. International Journal of Biological Macromolecules, 2012, 50, 1095-1102.	3.6	82
72	Analysis of region-specific changes in gene expression upon treatment with citalopram and desipramine reveals temporal dynamics in response to antidepressant drugs at the transcriptome level. Psychopharmacology, 2012, 223, 281-297.	1.5	15

IF # ARTICLE CITATIONS Long-lasting increase in [3H]CP55,940 binding to CB1 receptors following cocaine self-administration 1.1 and its withdrawal in rats. Brain Research, 2012, 1451, 34-43. An investigation of the affinities, specificity and kinetics involved in the interaction between the $Yina \in fYanga \in f1$ transcription factor and DNA. FEBS Journal, 2012, 279, 3147-3158. 74 2.2 17 Intrahepatic expression of genes related to metabotropic receptors in chronic hepatitis. World 1.4 Journal of Gastroenterology, 2012, 18, 4156. Norepinephrine transporter (NET) knock-out upregulates dopamine and serotonin transporters in the 76 1.9 14 mouse brain. Neurochemistry International, 2011, 59, 185-191. Efficient overexpression and purification of active full-length human transcription factor Yin Yang 1 0.6 in Escherichia coli. Protein Expression and Purification, 2011, 77, 198-206. P.1.028 Serum levels of somatostatin-28 and its binding sites in medial habenular nucleus differentiate 78 rats responding and non responding to chronic mild stress. European Neuropsychopharmacology, 0.3 1 2011, 21, S131-S132. Effect of clozapine on the dimerization of serotonin 5-HT2A receptor and its genetic variant 79 5-HT2AH425Y with dopamine D2 receptor. European Journal of Pharmacology, 2011, 659, 114-123. Two modes of fatty acid binding to bovine β″actoglobulin—crystallographic and spectroscopic studies. 80 1.1 96 Journal of Molecular Recognition, 2011, 24, 341-349. Changes in the level of calcyon mRNA in the brain of rats exposed to cocaine, self-administered or received passively. European Journal of Pharmacology, 2010, 634, 33-39. Hetero-dimerization of serotonin 5-HT2A and dopamine D2 receptors. Biochimica Et Biophysica Acta -82 1.9 102 Molecular Cell Research, 2010, 1803, 1347-1358. Comparison of protein precipitation methods for various rat brain structures prior to proteomic 83 1.3 164 analysis. Electrophoresis, 2010, 31, 3573-3579. Effect of chronic mild stress and imipramine on the proteome of the rat dentate gyrus. Journal of 84 2.1 28 Neurochemistry, 2010, 113, 848-859. P.1.a.020 Expression of calcyon gene in rat brain after stressfull behavioural procedures. European 0.3 Neuropsychopharmacology, 2010, 20, S223-S224. cAMP Receptor Protein from <i>Escherichia coli</i> as a Model of Signal Transduction in 86 1.0 94 Proteins – A Review. Journal of Molecular Microbiology and Biotechnology, 2009, 17, 1-11. Studies on the role of the receptor protein motifs possibly involved in electrostatic interactions on the dopamine D₁and D₂ receptor oligomerization. FEBS Journal, 2009, 276, 2.2 760-775. Role of silent polymorphisms within the dopamine D1 receptor associated with schizophrenia on 88 1.5 13 D1–D2 receptor hetero-dimerization. Pharmacological Reports, 2009, 61, 1024-103'3. P.1.13 Time-dependent alterations in genes expression in rat brain after administration of antidepressants â€" a gene miccroarray, RT-PCR study. European Neuropsychopharmacology, 2009, 19, S13-S13. Neuroadaptive changes in the rat brain GABAB receptors after withdrawal from cocaine 90 1.7 18 self-administration. European Journal of Pharmacology, 2008, 599, 58-64.

#	Article	IF	CITATIONS
91	P.2.04 The effect of two behavioral tests on the corticosterone level in plasma of mice lacking the noradrenaline transporter. European Neuropsychopharmacology, 2008, 18, s40.	0.3	4
92	The role of D1–D2 receptor hetero-dimerization in the mechanism of action of clozapine. European Neuropsychopharmacology, 2008, 18, 682-691.	0.3	38
93	Mechanism of action of clozapine in the context of dopamine D1-D2 receptor hetero-dimerizationa working hypothesis. Pharmacological Reports, 2008, 60, 581-7.	1.5	19
94	Alterations in gamma-aminobutyric acid(B) receptor binding in the rat brain after reinstatement of cocaine-seeking behavior. Pharmacological Reports, 2008, 60, 834-43.	1.5	13
95	Effect of two behavioral tests on corticosterone level in plasma of mice lacking the noradrenaline transporter. Pharmacological Reports, 2008, 60, 1008-13.	1.5	20
96	P.1.29 Effect of clozapine on dopamine D1 and D2 receptors interaction in the HEK 293 cells. European Neuropsychopharmacology, 2007, 17, S25-S26.	0.3	0
97	Active versus passive cocaine administration: Differences in the neuroadaptive changes in the brain dopaminergic system. Brain Research, 2007, 1157, 1-10.	1.1	44
98	Fluorescence studies of homooligomerization of adenosine A2A and serotonin 5-HT1A receptors reveal the specificity of receptor interactions in the plasma membrane. Pharmacological Reports, 2007, 59, 379-92.	1.5	48
99	Effect of citalopram in the modified forced swim test in rats. Pharmacological Reports, 2007, 59, 785-8.	1.5	17
100	P.1.c.041 Fluorescence in vitro studies of human adenosine A2A and serotonin 5HT1A receptors homodimerization. European Neuropsychopharmacology, 2006, 16, S245-S246.	0.3	0
101	Fluorescence Studies Reveal Heterodimerization of Dopamine D1 and D2 Receptors in the Plasma Membrane. Biochemistry, 2006, 45, 8751-8759.	1.2	62
102	Delayed effects of antidepressant drugs in rats. Behavioural Pharmacology, 2006, 17, 641-649.	0.8	18
103	Norepinephrine transporter knockout-induced up-regulation of brain alpha2A/C-adrenergic receptors. Journal of Neurochemistry, 2006, 96, 1111-1120.	2.1	28
104	Alterations in BDNF and trkB mRNAs following acute or sensitizing cocaine treatments and withdrawal. Brain Research, 2006, 1071, 218-225.	1.1	98
105	Effect of Antidepressant Drugs in Mice Lacking the Norepinephrine Transporter. Neuropsychopharmacology, 2006, 31, 2424-2432.	2.8	64
106	Effects of PRI-2191—A low-calcemic analog of 1,25-dihydroxyvitamin D3 on the seizure-induced changes in brain gene expression and immune system activity in the rat. Brain Research, 2005, 1039, 1-13.	1.1	13
107	Opioid and monoamine systems mediate the discriminative stimulus of tramadol in rats. European Journal of Pharmacology, 2004, 498, 143-151.	1.7	17
108	Long-term exposure of rats to tramadol alters brain dopamine and α1-adrenoceptor function that may be related to antidepressant potency. European Journal of Pharmacology, 2004, 501, 103-110.	1.7	35

#	Article	IF	CITATIONS
109	Effects of tramadol on $\hat{l}\pm 2$ -adrenergic receptors in the rat brain. Brain Research, 2004, 1016, 263-267.	1.1	27
110	Neuronal cell lines transfected with the dopamine D2 receptor gene promoter as a model for studying the effects of antidepressant drugs. Molecular Brain Research, 2004, 128, 75-82.	2.5	17
111	The effect of combined treatment with imipramine and amantadine on the behavioral reactivity of central ??1-adrenergic system in rats. Behavioural Pharmacology, 2004, 15, 159-165.	0.8	8
112	Brain dopamine receptors–research perspectives and potential sites of regulation. Polish Journal of Pharmacology, 2004, 56, 659-71.	0.3	10
113	SCH 58261, a selective adenosine A2A receptor antagonist, decreases the haloperidol-enhanced proenkephalin mRNA expression in the rat striatum. Brain Research, 2003, 977, 270-277.	1.1	19
114	Effect of repeated treatment with tianeptine and fluoxetine on central dopamine D2/D3 receptors. Behavioural Pharmacology, 2002, 13, 127-138.	0.8	29
115	Effect of tianeptine and fluoxetine on the levels of Met-enkephalin and mRNA encoding proenkephalin in the rat. Journal of Physiology and Pharmacology, 2002, 53, 117-25.	1.1	20
116	Effect of joint administration of imipramine and amantadine on binding of [3H]7-OH-DPAT to dopamine D3 receptors in peripheral blood lymphocytes of the patients with drug-resistant unipolar depression. Polish Journal of Pharmacology, 2002, 54, 703-6.	0.3	3
117	Some behavioural effects of antidepressant drugs are time-dependent. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2001, 25, 373-393.	2.5	6
118	Effect of repeated treatment with tianeptine and fluoxetine on the central α1-adrenergic system. Neuropharmacology, 2001, 41, 360-368.	2.0	33
119	The effect of repeated treatment with pramipexole on the central dopamine D 3 system. Journal of Neural Transmission, 2000, 107, 1369-1379.	1.4	24
120	Pharmacological effects of milnacipran, a new antidepressant, given repeatedly on the $\hat{l}\pm 1$ -adrenergic and serotonergic 5-HT 2A systems. Journal of Neural Transmission, 2000, 107, 1345-1359.	1.4	34
121	The role of dopamine D2 receptor in the behavioral effects of imipraminestudy with the use of antisense oligonucleotides. Journal of Physiology and Pharmacology, 2000, 51, 401-9.	1.1	12
122	Effects of antidepressant drugs on the dopamine D2/D3 receptors in the rat brain differentiated by agonist and antagonist binding – an autoradiographic analysis. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 359, 178-186.	1.4	33
123	Effects of venlafaxine given repeatedly on α1-adrenergic, dopaminergic and serotonergic receptors in rat brain. Human Psychopharmacology, 1999, 14, 333-344.	0.7	6
124	The effect of prolonged treatment with imipramine on the biosynthesis and functional characteristics of D2 dopamine receptors in the rat caudate putamen. British Journal of Pharmacology, 1998, 123, 833-838.	2.7	9
125	A Search for New 5-HT1A/5-HT2A Receptor Ligands. In Vitro and in vivo Studies of 1-[ï‰-(4-Aryl-1-piperazinyl)alkyl]indolin-2(1H)-ones. Archiv Der Pharmazie, 1998, 331, 325-330.	2.1	8
126	Effect of antidepressant drugs administered repeatedly on the dopamine D3 receptors in the rat brain. European Journal of Pharmacology, 1998, 351, 31-37.	1.7	71

#	Article	IF	CITATIONS
127	Pharmacological profile of venlafaxine, a new antidepressant, given acutely. Polish Journal of Pharmacology, 1998, 50, 107-15.	0.3	3
128	Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behavioural Pharmacology, 1997, 8, 607-618.	0.8	97
129	The effect of imipramine on the amount of mRNA coding for rat dopamine D2 autoreceptors. European Journal of Pharmacology, 1997, 337, 291-296.	1.7	12
130	The corticosterone synthesis inhibitor metyrapone decreases dopamine D1 receptors in the rat brain. Neuroscience, 1997, 79, 489-495.	1.1	25
131	Repeated administration of antidepressant drugs affects the levels of mRNA coding for D1 and D2 dopamine receptors in the rat brain. Journal of Neural Transmission, 1997, 104, 515-524.	1.4	49
132	Time-dependent effects of antidepressant drugs on the low dose of apomorphine-induced locomotor hypoactivity in rats. Polish Journal of Pharmacology, 1997, 49, 337-43.	0.3	3
133	Antidepressant drugs given repeatedly change the binding of the dopamine D2 receptor agonist, [3H]N-0437, to dopamine D2 receptors in the rat brain. European Journal of Pharmacology, 1996, 304, 49-54.	1.7	46
134	The effects of paroxetine given repeatedly on the 5-HT receptor subpopulations in the rat brain. Psychopharmacology, 1996, 127, 73-82.	1.5	77
135	Adaptive changes in the rat dopaminergic transmission following repeated lithium administration. Journal of Neural Transmission, 1996, 103, 765-776.	1.4	25
136	The effect of prolonged administration of lithium on the level of dopamine D2 receptor mRNA in the rat striatum and nucleus accumbens. Acta Neurobiologiae Experimentalis, 1996, 56, 29-34.	0.4	5
137	Effect of chronic mild stress and prolonged treatment with imipramine on the levels of endogenous Met-enkephalin in the rat dopaminergic mesolimbic system. Polish Journal of Pharmacology, 1996, 48, 53-6.	0.3	4
138	The effect of prolonged treatment with imipramine and electroconvulsive shock on the levels of endogenous enkephalins in the nucleus accumbens and the ventral tegmentum of the rat. Journal of Neural Transmission, 1995, 102, 221-228.	1.4	27
139	The effect of prolonged lithium administration on the cAMP level in the rat striatum. Polish Journal of Pharmacology, 1995, 47, 115-20.	0.3	1
140	The effect of mu and kappa opioid receptor agonists on cAMP level in hippocampus of kainic acid-treated rats. Polish Journal of Pharmacology, 1995, 47, 121-6.	0.3	2