
Shiqi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/971769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by ¹ H NMR. ACS Biomaterials Science and Engineering, 2022, 8, 4132-4139.	2.6	5
2	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	8.6	23
3	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. Advanced Materials, 2022, 34, e2108012.	11.1	25
4	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors (Adv. Mater. 9/2022). Advanced Materials, 2022, 34, .	11.1	0
5	Microfluidics Fabrication of Micrometerâ€Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Advanced Healthcare Materials, 2022, 11, .	3.9	22
6	Intracellular Delivery of Budesonide and Polydopamine Co‣oaded in Endosomolytic Poly(butyl) Tj ETQq0 0 0 rg from M1 to M2. Advanced Therapeutics, 2021, 4, 2000058.	gBT /Overl 1.6	ock 10 Tf 50 13
7	pH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape. Frontiers in Chemistry, 2021, 9, 645297.	1.8	16
8	Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Advanced Drug Delivery Reviews, 2021, 174, 576-612.	6.6	36
9	Dualâ€Crosslinked Dynamic Hydrogel Incorporating {Mo ₁₅₄ } with pH and NIR Responsiveness for Chemoâ€Photothermal Therapy. Advanced Materials, 2021, 33, e2007761.	11.1	73
10	Investigation of the lipidomic changes in differentiated glioblastoma cells after drug treatment using MALDI-MS. Talanta, 2021, 233, 122570.	2.9	8
11	Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chemical Communications, 2021, 57, 4212-4229.	2.2	25
12	Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 254-265.	2.0	13
13	Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Applied Materials & Interfaces, 2020, 12, 44554-44562.	4.0	17
14	Superfast and controllable microfluidic inking of anti-inflammatory melanin-like nanoparticles inspired by cephalopods. Materials Horizons, 2020, 7, 1573-1580.	6.4	16
15	Polyoxometalate Composites in Cancer Therapy and Diagnostics. European Journal of Inorganic Chemistry, 2020, 2020, 2121-2132.	1.0	29
16	Fats' Love–Hate Relationships: A Molecular Dynamics Simulation and Hands-On Experiment Outreach Activity to Introduce the Amphiphilic Nature and Biological Functions of Lipids to Young Students and the General Public. Journal of Chemical Education, 2020, 97, 1360-1367.	1.1	3
17	Chip-based SALDI-MS for rapid determination of intracellular ratios of glutathione to glutathione disulfide. Science China Chemistry, 2019, 62, 142-150.	4.2	12
18	Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass. Talanta, 2019, 191, 67-73.	2.9	18

#	Article	IF	CITATIONS
19	A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Advanced Functional Materials, 2019, 29, 1905352.	7.8	43
20	Antitumor Therapeutics: A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics (Adv. Funct. Mater.) Tj ETQq0 0 0 rgBT	/Ø8erlock	a 110 Tf 50 69
21	A pH-Responsive Amphiphilic Hydrogel Based on Pseudopeptides and Poly(ethylene glycol) for Oral Delivery of Hydrophobic Drugs. ACS Biomaterials Science and Engineering, 2018, 4, 4236-4243.	2.6	19
22	A New Strategy for Intestinal Drug Delivery via pH-Responsive and Membrane-Active Nanogels. ACS Applied Materials & Interfaces, 2018, 10, 36622-36627.	4.0	20
23	Membrane-Anchoring, Comb-Like Pseudopeptides for Efficient, pH-Mediated Membrane Destabilization and Intracellular Delivery. ACS Applied Materials & amp; Interfaces, 2017, 9, 8021-8029.	4.0	26
24	Gold nanoparticles modified porous silicon chip for SALDI-MS determination of glutathione in cells. Talanta, 2017, 168, 222-229.	2.9	24
25	pH-Responsive, Lysine-Based, Hyperbranched Polymers Mimicking Endosomolytic Cell-Penetrating Peptides for Efficient Intracellular Delivery. Chemistry of Materials, 2017, 29, 5806-5815.	3.2	26
26	Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. Polymer Bulletin, 2017, 74, 4525-4536.	1.7	9
27	Influence of a pH-sensitive polymer on the structure of monoolein cubosomes. Soft Matter, 2017, 13, 7571-7577.	1.2	22
28	Amino Acid Based Hydrogels with Dual Responsiveness for Oral Drug Delivery. Macromolecular Bioscience, 2016, 16, 1258-1264.	2.1	10
29	Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chemical Science, 2016, 7, 4741-4747.	3.7	128
30	Nephrocyte-neurocyte interaction and cellular metabolic analysis on membrane-integrated microfluidic device. Science China Chemistry, 2016, 59, 243-250.	4.2	15
31	Optically Active Polymer Via Oneâ€Pot Combination of Chemoenzymatic Transesterification and RAFT Polymerization: Synthesis and Its Application in Hybrid Silica Particles. Macromolecular Chemistry and Physics, 2015, 216, 1483-1489.	1.1	8
32	Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging. RSC Advances, 2015, 5, 65884-65889.	1.7	14
33	Oxygen-induced cell migration and on-line monitoring biomarkers modulation of cervical cancers on a microfluidic system. Scientific Reports, 2015, 5, 9643.	1.6	56
34	Cell-patterned glass spray for direct drug assay using mass spectrometry. Analytica Chimica Acta, 2015, 892, 132-139.	2.6	15
35	Synthesis of amphiphilic fluorescent PEGylated AIE nanoparticles via RAFT polymerization and their cell imaging applications. RSC Advances, 2015, 5, 89472-89477.	1.7	22
36	ZnO Nanowire Arrays Exhibit Cytotoxic Distinction to Cancer Cells with Different Surface Charge Density: Cytotoxicity is Chargeâ€Đependent. Small, 2014, 10, 4113-4117.	5.2	24

Shiqi Wang

#	Article	IF	CITATIONS
37	Facile Oneâ€Pot Synthesis of New Functional Polymers through Multicomponent Systems. Macromolecular Chemistry and Physics, 2014, 215, 486-492.	1.1	30
38	Fluorescent PEGylation agent by a thiolactone-based one-pot reaction: a new strategy for theranostic combinations. Polymer Chemistry, 2014, 5, 6656-6661.	1.9	28
39	Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polymer Chemistry, 2014, 5, 2704-2708.	1.9	93
40	Synthesis of Multifunctional Polymers through the Ugi Reaction for Protein Conjugation. Macromolecules, 2014, 47, 5607-5612.	2.2	76
41	From Polymer Sequence Control to Protein Recognition: Synthesis, Self-Assembly and Lectin Binding. Macromolecules, 2014, 47, 4676-4683.	2.2	48
42	Introducing mercaptoacetic acid locking imine reaction into polymer chemistry as a green click reaction. Polymer Chemistry, 2014, 5, 2695-2699.	1.9	51
43	Multifunctional comb copolymer ethyl cellulose-g-poly(ε-caprolactone)-rhodamine B/folate: Synthesis, characterization and targeted bonding application. European Polymer Journal, 2014, 55, 235-244.	2.6	22
44	Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications. Toxicology Research, 2013, 2, 335.	0.9	175
45	Synthesis of gradient copolymers by concurrent enzymatic monomer transformation and RAFT polymerization. Polymer Chemistry, 2013, 4, 5720.	1.9	19
46	A multicomponent polymerization system: click–chemoenzymatic–ATRP in one-pot for polymer synthesis. Polymer Chemistry, 2013, 4, 466-469.	1.9	38
47	Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale, 2013, 5, 147-150.	2.8	230
48	Size tunable fluorescent nano-graphite oxides: preparation and cell imaging applications. Physical Chemistry Chemical Physics, 2013, 15, 19013.	1.3	80
49	Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging. Journal of Colloid and Interface Science, 2013, 397, 39-44.	5.0	171
50	One-pot synthesis of optically active polymervia concurrent cooperation of enzymatic resolution and living radical polymerization. Polymer Chemistry, 2013, 4, 264-267.	1.9	28
51	Aggregation-induced emission material based fluorescent organic nanoparticles: facile PEGylation and cell imaging applications. RSC Advances, 2013, 3, 9633.	1.7	81
52	Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Physical Chemistry Chemical Physics, 2013, 15, 9907.	1.3	266
53	Facile Incorporation of Aggregation-Induced Emission Materials into Mesoporous Silica Nanoparticles for Intracellular Imaging and Cancer Therapy. ACS Applied Materials & Interfaces, 2013, 5, 1943-1947.	4.0	196
54	Hierarchically Porous Chitosan–PEG–Silica Biohybrid: Synthesis and Rapid Cell Adsorption. Advanced Healthcare Materials, 2013, 2, 302-305.	3.9	10

Shiqi Wang

#	Article	IF	CITATIONS
55	One-Pot Cascade Synthetic Strategy: A Smart Combination of Chemoenzymatic Transesterification and Raft Polymerization. ACS Macro Letters, 2012, 1, 1224-1227.	2.3	38
56	Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale, 2012, 4, 5581.	2.8	476
57	Cellular responses of aniline oligomers: a preliminary study. Toxicology Research, 2012, 1, 201.	0.9	166
58	Fluoridated HAp:Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging. Nanoscale, 2012, 4, 6967.	2.8	149
59	PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polymer Chemistry, 2012, 3, 2716.	1.9	105