
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/971580/publications.pdf Version: 2024-02-01

Ιμη Ζηγης

#	Article	IF	CITATIONS
1	Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 2012, 24, 4419-4423.	21.0	350
2	Silica Nanopollens Enhance Adhesion for Long-Term Bacterial Inhibition. Journal of the American Chemical Society, 2016, 138, 6455-6462.	13.7	219
3	Anion Assisted Synthesis of Large Pore Hollow Dendritic Mesoporous Organosilica Nanoparticles: Understanding the Composition Gradient. Chemistry of Materials, 2016, 28, 704-707.	6.7	199
4	Nanoparticles Mimicking Viral Surface Topography for Enhanced Cellular Delivery. Advanced Materials, 2013, 25, 6233-6237.	21.0	174
5	Structure-Dependent and Glutathione-Responsive Biodegradable Dendritic Mesoporous Organosilica Nanoparticles for Safe Protein Delivery. Chemistry of Materials, 2016, 28, 9008-9016.	6.7	142
6	Coreâ€Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultraâ€large Cavity for Protein Delivery. Small, 2015, 11, 5949-5955.	10.0	140
7	Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials, 2018, 175, 82-92.	11.4	135
8	Multiâ€shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angewandte Chemie - International Edition, 2017, 56, 8446-8450.	13.8	128
9	Synthesis of Magnesium Oxide Hierarchical Microspheres: A Dual-Functional Material for Water Remediation. ACS Applied Materials & Interfaces, 2015, 7, 21278-21286.	8.0	124
10	Asymmetric Silica Nanoparticles with Tunable Head–Tail Structures Enhance Hemocompatibility and Maturation of Immune Cells. Journal of the American Chemical Society, 2017, 139, 6321-6328.	13.7	105
11	Self-Organized Mesostructured Hollow Carbon Nanoparticles via a Surfactant-Free Sequential Heterogeneous Nucleation Pathway. Chemistry of Materials, 2015, 27, 6297-6304.	6.7	99
12	Nitrogen-doped ordered mesoporous carbon single crystals: aqueous organic–organic self-assembly and superior supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 24041-24048.	10.3	96
13	Rechargeable aluminum–selenium batteries with high capacity. Chemical Science, 2018, 9, 5178-5182.	7.4	87
14	Biphasic Synthesis of Largeâ€Pore and Wellâ€Dispersed Benzene Bridged Mesoporous Organosilica Nanoparticles for Intracellular Protein Delivery. Small, 2015, 11, 2743-2749.	10.0	82
15	Understanding the contribution of surface roughness and hydrophobic modification of silica nanoparticles to enhanced therapeutic protein delivery. Journal of Materials Chemistry B, 2016, 4, 212-219.	5.8	75
16	A Vesicle Supraâ€Assembly Approach to Synthesize Amineâ€Functionalized Hollow Dendritic Mesoporous Silica Nanospheres for Protein Delivery. Small, 2016, 12, 5169-5177.	10.0	72
17	A simple approach to prepare monodisperse mesoporous silica nanospheres with adjustable sizes. Journal of Colloid and Interface Science, 2012, 376, 67-75.	9.4	71
18	Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chemical Communications, 2014, 50, 5547-5550.	4.1	71

#	Article	IF	CITATIONS
19	Polyethyleneimine grafted short halloysite nanotubes for gene delivery. Materials Science and Engineering C, 2017, 81, 224-235.	7.3	70
20	New Understanding and Simple Approach to Synthesize Highly Hydrothermally Stable and Ordered Mesoporous Materials. Chemistry of Materials, 2009, 21, 5413-5425.	6.7	69
21	Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behavior. ACS Applied Materials & Interfaces, 2016, 8, 25306-25312.	8.0	69
22	Supra-Assembly of Siliceous Vesicles. Journal of the American Chemical Society, 2006, 128, 15992-15993.	13.7	68
23	Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. Journal of Materials Chemistry A, 2017, 5, 19416-19421.	10.3	68
24	Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery. ACS Central Science, 2015, 1, 328-334.	11.3	65
25	Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Research, 2017, 10, 605-617.	10.4	63
26	Low-cost and large-scale synthesis of functional porous materials for phosphate removal with high performance. Nanoscale, 2013, 5, 6173.	5.6	60
27	Glucose-Responsive Nanosystem Mimicking the Physiological Insulin Secretion via an Enzyme–Polymer Layer-by-Layer Coating Strategy. Chemistry of Materials, 2017, 29, 7725-7732.	6.7	46
28	Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins. Small, 2014, 10, 5068-5076.	10.0	45
29	Stepwise Pore Size Reduction of Ordered Nanoporous Silica Materials at Angstrom Precision. Journal of the American Chemical Society, 2013, 135, 8444-8447.	13.7	38
30	Floating tablets from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8298-8302.	5.8	37
31	Silica vesicles as nanocarriers and adjuvants for generating both antibody and T-cell mediated immune resposes to Bovine Viral Diarrhoea Virus E2 protein. Biomaterials, 2014, 35, 9972-9983.	11.4	37
32	Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. Journal of Materials Chemistry B, 2015, 3, 8477-8485.	5.8	36
33	Highly Thiolated Dendritic Mesoporous Silica Nanoparticles with High-Content Gold as Nanozymes: The Nano-Gold Size Matters. ACS Applied Materials & Interfaces, 2019, 11, 13264-13272.	8.0	36
34	Functionalized Periodic Mesoporous Organosilicas for Enhanced and Selective Peptide Enrichment. Langmuir, 2010, 26, 7444-7450.	3.5	35
35	Synthesis of hierarchically porous TiO 2 nanomaterials using alginate as soft templates. Materials Research Bulletin, 2016, 83, 609-614.	5.2	32
36	A combo-pore approach for the programmable extraction of peptides/proteins. Nanoscale, 2014, 6, 5121-5125.	5.6	31

#	Article	IF	CITATIONS
37	Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Research, 2016, 9, 291-305.	10.4	30
38	Protein Therapy: Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins (Small 24/2014). Small, 2014, 10, 4986-4986.	10.0	28
39	Mg(OH) ₂ –MgO@reduced graphene oxide nanocomposites: the roles of composition and nanostructure in arsenite sorption. Journal of Materials Chemistry A, 2017, 5, 24484-24492.	10.3	26
40	Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chemical Science, 2019, 10, 10388-10394.	7.4	26
41	Synthesis of biphenyl bridged dendritic mesoporous organosilica with extremely high adsorption of pyrene. Journal of Materials Chemistry A, 2019, 7, 12029-12037.	10.3	25
42	Facile Synthesis of Largeâ€Pore Bicontinuous Cubic Mesoporous Silica Nanoparticles for Intracellular Gene Delivery. ChemNanoMat, 2016, 2, 220-225.	2.8	24
43	Synthesis of SBA-15 rods with small sizes for enhanced cellular uptake. Journal of Materials Chemistry B, 2014, 2, 4929-4934.	5.8	23
44	Immunogenicity of Outer Membrane Proteins VirB9-1 and VirB9-2, a Novel Nanovaccine against Anaplasma marginale. PLoS ONE, 2016, 11, e0154295.	2.5	19
45	Dendritic mesoporous carbon nanoparticles for ultrahigh and fast adsorption of anthracene. Chemosphere, 2019, 215, 716-724.	8.2	19
46	Why synthetic virus-like nanoparticles can achieve higher cellular uptake efficiency?. Nanoscale, 2020, 12, 14911-14918.	5.6	19
47	Controlled release of volatile (â^)-menthol in nanoporous silica materials. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 593-602.	1.6	18
48	Controlled synthesis of hexagonal mesostructure silica and macroporous ordered siliceous foams for VOCs adsorption. RSC Advances, 2015, 5, 5695-5703.	3.6	18
49	Confinement of Chemisorbed Phosphates in a Controlled Nanospace with Threeâ€Dimensional Mesostructures. Chemistry - A European Journal, 2013, 19, 5578-5585.	3.3	16
50	Multiâ€shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angewandte Chemie, 2017, 129, 8566-8570.	2.0	16
51	<scp>Nanobiopesticides</scp> : Silica nanoparticles with spiky surfaces enable dual adhesion and enhanced performance. EcoMat, 2020, 2, e12028.	11.9	16
52	Silica Vesicle Nanovaccine Formulations Stimulate Long-Term Immune Responses to the Bovine Viral Diarrhoea Virus E2 Protein. PLoS ONE, 2015, 10, e0143507.	2.5	16
53	Nanodispersed UV blockers in skin-friendly silica vesicles with superior UV-attenuating efficiency. Journal of Materials Chemistry B, 2014, 2, 7673-7678.	5.8	15
54	Thiolated silica nanoadsorbents enable ultrahigh and fast decontamination of mercury(<scp>ii</scp>): understanding the contribution of thiol moieties' density and accessibility on adsorption performance. Environmental Science: Nano, 2020, 7, 851-860.	4.3	15

#	Article	lF	CITATIONS
55	Tuning cooperative vesicle templating and liquid crystal templating simply by varying silica source. Journal of Materials Research, 2010, 25, 648-657.	2.6	11
56	A silanol protection mechanism: Understanding the decomposition behavior of surfactants in mesostructured solids. Journal of Materials Research, 2011, 26, 804-814.	2.6	11
57	Preparation of Siliceous Vesicles with Adjustable Sizes, Wall Thickness, and Shapes. Chemistry Letters, 2009, 38, 442-443.	1.3	10
58	Sensitive Detection of Human Insulin Using a Designed Combined Pore Approach. Small, 2014, 10, 2413-2418.	10.0	10
59	Solvothermal-assisted evaporation-induced self-assembly of ordered mesoporous alumina with improved performance. Journal of Colloid and Interface Science, 2018, 529, 432-443.	9.4	10
60	Synergistic Effect of Two Nanotechnologies Enhances the Protective Capacity of the Theileria parva Sporozoite p67C Antigen in Cattle. Journal of Immunology, 2021, 206, 686-699.	0.8	10
61	Pore architecture influences the enzyme immobilization performance of mesoporous silica nanospheres. Microporous and Mesoporous Materials, 2022, 338, 111963.	4.4	10
62	A Bioinspired Route to Various Siliceous Vesicular Structures. Journal of Nanoscience and Nanotechnology, 2010, 10, 612-615.	0.9	6
63	Nanoparticle-Based Delivery of Anaplasma marginale Membrane Proteins; VirB9-1 and VirB10 Produced in the Pichia pastoris Expression System. Nanomaterials, 2016, 6, 201.	4.1	6
64	A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length. Langmuir, 2018, 34, 5011-5019.	3.5	6
65	Characterization of the Biodistribution of a Silica Vesicle Nanovaccine Carrying a Rhipicephalus (Boophilus) microplus Protective Antigen With in vivo Live Animal Imaging. Frontiers in Bioengineering and Biotechnology, 2020, 8, 606652.	4.1	6
66	A partially purified outer membrane protein VirB9-1 for low-cost nanovaccines against Anaplasma marginale. Vaccine, 2017, 35, 77-83.	3.8	3
67	Submicron-Sized Vermiculite Assisted Oregano Oil for Controlled Release and Long-Term Bacterial Inhibition. Antibiotics, 2021, 10, 1324.	3.7	1