Fernando Cazaña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9715510/publications.pdf

Version: 2024-02-01

933447 888059 17 319 10 17 citations h-index g-index papers 17 17 17 404 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Steam reforming of clean biogas over Rh and Ru open-cell metallic foam structured catalysts. Catalysis Today, 2022, 383, 74-83.	4.4	11
2	Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature. Catalysis Today, 2022, 383, 236-246.	4.4	8
3	Development of one-pot Cu/cellulose derived carbon catalysts for RWGS reaction. Fuel, 2022, 319, 123707.	6.4	8
4	Hydrogen and CNT Production by Methane Cracking Using Ni–Cu and Co–Cu Catalysts Supported on Argan-Derived Carbon. ChemEngineering, 2022, 6, 47.	2.4	5
5	Selective synthesis of carbon nanotubes by catalytic decomposition of methane using Co-Cu/cellulose derived carbon catalysts: A comprehensive kinetic study. Chemical Engineering Journal, 2021, 404, 126103.	12.7	29
6	Highly Active Ce- and Mg-Promoted Ni Catalysts Supported on Cellulose-Derived Carbon for Low-Temperature CO ₂ Methanation. Energy & Energy & 2021, 35, 17212-17224.	5.1	17
7	Use of Ni Catalysts Supported on Biomorphic Carbon Derived From Lignocellulosic Biomass Residues in the Decomposition of Methane. Frontiers in Energy Research, 2019, 7, .	2.3	10
8	Synthesis of graphenic nanomaterials by decomposition of methane on a Ni-Cu/biomorphic carbon catalyst. Kinetic and characterization results. Catalysis Today, 2018, 299, 67-79.	4.4	19
9	Synthesis of Pd-Al/biomorphic carbon catalysts using cellulose as carbon precursor. Catalysis Today, 2018, 301, 226-238.	4.4	15
10	In situ generation of COx-free H2 by catalytic ammonia decomposition over Ru-Al-monoliths. Fuel, 2018, 233, 851-859.	6.4	32
11	Effect of the Operating Conditions on the Growth of Carbonaceous Nanomaterials over Stainless Steel Foams. Kinetic and Characterization Studies. International Journal of Chemical Reactor Engineering, 2017, 15, .	1.1	2
12	Growth of carbonaceous nanomaterials over stainless steel foams. Effect of activation temperature. Catalysis Today, 2016, 273, 41-49.	4.4	9
13	Kinetics of liquid phase cyclohexene hydrogenation on Pd–Al/biomorphic carbon catalysts. Catalysis Today, 2015, 249, 127-136.	4.4	9
14	Modelling of experimental vanillin hydrodeoxygenation reactions in water/oil emulsions. Effects of mass transport. Catalysis Today, 2013, 210, 89-97.	4.4	27
15	Ni-Co-Mg-Al catalysts for hydrogen and carbonaceous nanomaterials production by CCVD of methane. Catalysis Today, 2011, 172, 143-151.	4.4	35
16	Kinetics of carbon nanotubes growth on a Ni–Mg–Al catalyst by CCVD of methane: Influence of catalyst deactivation. Catalysis Today, 2010, 154, 217-223.	4.4	29
17	Carbon Nanotube Growth by Catalytic Chemical Vapor Deposition: A Phenomenological Kinetic Model. Journal of Physical Chemistry C, 2010, 114, 4773-4782.	3.1	54