Shiori Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9714387/publications.pdf

Version: 2024-02-01

1040056 996975 19 239 9 15 citations h-index g-index papers 19 19 19 242 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Dry-jet wet spinning of \hat{l}^2 -1,3-glucan and \hat{l} ±-1,3-glucan. Polymer Journal, 2022, 54, 493-501.	2.7	3
2	Curdlan acetate fibres with low degrees of substitution fabricated <i>via</i> a continuous process of chemical modification and wet spinning using an ionic liquid. Green Chemistry, 2022, 24, 2567-2575.	9.0	3
3	Selective Modification of Aliphatic Hydroxy Groups in Lignin Using Ionic Liquid. Catalysts, 2021, 11, 120.	3.5	13
4	Air-Jet Wet-Spinning of Curdlan Using Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9, 4247-4255.	6.7	12
5	Wet Spinning and Structure Analysis of $\hat{l}_{\pm}-1,3$ -Glucan Regenerated Fibers. ACS Applied Polymer Materials, 2021, 3, 2063-2069.	4.4	8
6	Direct Conversion of Sugarcane Bagasse into an Injection-Moldable Cellulose-Based Thermoplastic via Homogeneous Esterification with Mixed Acyl Groups. ACS Sustainable Chemistry and Engineering, 2021, 9, 5933-5941.	6.7	15
7	High Tensile Strength Regenerated î±-1,3-Glucan Fiber and Crystal Transition. ACS Omega, 2021, 6, 20361-20368.	3.5	4
8	Wet Spinning of $\langle i \rangle \hat{l} \pm \langle i \rangle -1,3$ -glucan using an lonic Liquid. Journal of Fiber Science and Technology, 2021, 77, 213-222.	0.4	2
9	Selective substitution of long-acyl groups into alcohols of kraft lignin over transesterification using ionic liquid. Journal of Wood Science, 2021, 67, .	1.9	7
10	Green Conversion of Total Lignocellulosic Components of Sugarcane Bagasse to Thermoplastics Through Transesterification Using Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9, 15249-15257.	6.7	12
11	Green Synthesis and Fractionation of Cellulose Acetate by Controlling the Reactivity of Polysaccharides in Sugarcane Bagasse. ACS Sustainable Chemistry and Engineering, 2020, 8, 9002-9008.	6.7	14
12	Understanding and Suppression of Side Reaction during Transesterification of Phenolic Hydroxyl Groups of Lignin with Vinyl Ester. Chemistry Letters, 2020, 49, 900-904.	1.3	4
13	Flame-retardant thermoplastics derived from plant cell wall polymers by single ionic liquid substitution. New Journal of Chemistry, 2019, 43, 2057-2064.	2.8	11
14	Flame-retardant plant thermoplastics directly prepared by single ionic liquid substitution. Polymer Journal, 2019, 51, 781-789.	2.7	4
15	Design of Functional Imidazolium-Based Ionic Liquids for Biomass Processing. , 2019, , 1-7.		0
16	BrÃ, nsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield. RSC Advances, 2018, 8, 14623-14632.	3.6	29
17	Cellulose-dissolving protic ionic liquids as low cost catalysts for direct transesterification reactions of cellulose. Green Chemistry, 2018, 20, 1412-1422.	9.0	52
18	Dual Catalytic Activity of an Ionic Liquid in Lignin Acetylation and Deacetylation. Chemistry Letters, 2018, 47, 860-863.	1.3	16

#	Article	IF	CITATIONS
19	Cellulose triacetate synthesis via one-pot organocatalytic transesterification and delignification of pretreated bagasse. RSC Advances, 2018, 8, 21768-21776.	3.6	30