
## Shiori Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9714387/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Cellulose-dissolving protic ionic liquids as low cost catalysts for direct transesterification reactions of cellulose. Green Chemistry, 2018, 20, 1412-1422.                                                                | 9.0 | 52        |
| 2  | Cellulose triacetate synthesis via one-pot organocatalytic transesterification and delignification of pretreated bagasse. RSC Advances, 2018, 8, 21768-21776.                                                               | 3.6 | 30        |
| 3  | BrÃ,nsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on<br>acidity and glucose yield. RSC Advances, 2018, 8, 14623-14632.                                                       | 3.6 | 29        |
| 4  | Dual Catalytic Activity of an Ionic Liquid in Lignin Acetylation and Deacetylation. Chemistry Letters, 2018, 47, 860-863.                                                                                                   | 1.3 | 16        |
| 5  | Direct Conversion of Sugarcane Bagasse into an Injection-Moldable Cellulose-Based Thermoplastic via<br>Homogeneous Esterification with Mixed Acyl Groups. ACS Sustainable Chemistry and Engineering,<br>2021, 9, 5933-5941. | 6.7 | 15        |
| 6  | Green Synthesis and Fractionation of Cellulose Acetate by Controlling the Reactivity of<br>Polysaccharides in Sugarcane Bagasse. ACS Sustainable Chemistry and Engineering, 2020, 8, 9002-9008.                             | 6.7 | 14        |
| 7  | Selective Modification of Aliphatic Hydroxy Groups in Lignin Using Ionic Liquid. Catalysts, 2021, 11, 120.                                                                                                                  | 3.5 | 13        |
| 8  | Air-Jet Wet-Spinning of Curdlan Using Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9, 4247-4255.                                                                                                          | 6.7 | 12        |
| 9  | Green Conversion of Total Lignocellulosic Components of Sugarcane Bagasse to Thermoplastics<br>Through Transesterification Using Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9,<br>15249-15257.          | 6.7 | 12        |
| 10 | Flame-retardant thermoplastics derived from plant cell wall polymers by single ionic liquid substitution. New Journal of Chemistry, 2019, 43, 2057-2064.                                                                    | 2.8 | 11        |
| 11 | Wet Spinning and Structure Analysis of α-1,3-Glucan Regenerated Fibers. ACS Applied Polymer Materials, 2021, 3, 2063-2069.                                                                                                  | 4.4 | 8         |
| 12 | Selective substitution of long-acyl groups into alcohols of kraft lignin over transesterification using ionic liquid. Journal of Wood Science, 2021, 67, .                                                                  | 1.9 | 7         |
| 13 | Flame-retardant plant thermoplastics directly prepared by single ionic liquid substitution. Polymer<br>Journal, 2019, 51, 781-789.                                                                                          | 2.7 | 4         |
| 14 | Understanding and Suppression of Side Reaction during Transesterification of Phenolic Hydroxyl<br>Groups of Lignin with Vinyl Ester. Chemistry Letters, 2020, 49, 900-904.                                                  | 1.3 | 4         |
| 15 | High Tensile Strength Regenerated $\hat{l}\pm$ -1,3-Glucan Fiber and Crystal Transition. ACS Omega, 2021, 6, 20361-20368.                                                                                                   | 3.5 | 4         |
| 16 | Dry-jet wet spinning of β-1,3-glucan and α-1,3-glucan. Polymer Journal, 2022, 54, 493-501.                                                                                                                                  | 2.7 | 3         |
| 17 | Curdlan acetate fibres with low degrees of substitution fabricated <i>via</i> a continuous process of chemical modification and wet spinning using an ionic liquid. Green Chemistry, 2022, 24, 2567-2575.                   | 9.0 | 3         |
| 18 | Wet Spinning of <i>α</i> -1,3-glucan using an Ionic Liquid. Journal of Fiber Science and Technology, 2021, 77, 213-222.                                                                                                     | 0.4 | 2         |

|                                                                                                | #  | Article                                                                                     | IF | CITATIONS |
|------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------|----|-----------|
| 19Design of Functional Imidazolium-Based Ionic Liquids for Biomass Processing. , 2019, , 1-7.0 | 19 | Design of Functional Imidazolium-Based Ionic Liquids for Biomass Processing. , 2019, , 1-7. |    | 0         |