## Seok-Seong Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/971397/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids.<br>International Immunopharmacology, 2009, 9, 127-133.                                                                 | 3.8 | 149       |
| 2  | Lipoteichoic Acid of Probiotic Lactobacillus plantarum Attenuates Poly I:C-Induced IL-8 Production in Porcine Intestinal Epithelial Cells. Frontiers in Microbiology, 2017, 8, 1827.                                     | 3.5 | 82        |
| 3  | Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli<br>and Salmonella Typhimurium. Food Control, 2019, 98, 274-280.                                                      | 5.5 | 71        |
| 4  | Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2.<br>Archives of Pharmacal Research, 2016, 39, 1519-1529.                                                          | 6.3 | 70        |
| 5  | Antagonistic Activities and Probiotic Potential of Lactic Acid Bacteria Derived From a Plant-Based<br>Fermented Food. Frontiers in Microbiology, 2018, 9, 1963.                                                          | 3.5 | 60        |
| 6  | Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Molecular Immunology, 2015, 64, 183-189.                                                  | 2.2 | 56        |
| 7  | Coffee Intake and Obesity: A Meta-Analysis. Nutrients, 2019, 11, 1274.                                                                                                                                                   | 4.1 | 49        |
| 8  | Different dietary fibre sources and risks of colorectal cancer and adenoma: a dose–response<br>meta-analysis of prospective studies. British Journal of Nutrition, 2019, 122, 605-615.                                   | 2.3 | 35        |
| 9  | Enterococcus faecalislipoteichoic acid suppressesAggregatibacter<br>actinomycetemcomitanslipopolysaccharide-induced IL-8 expression in human periodontal ligament<br>cells. International Immunology, 2015, 27, 381-391. | 4.0 | 32        |
| 10 | Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium. Food Control, 2020, 117, 107361.                                                               | 5.5 | 30        |
| 11 | Orally administered collagen peptide protects against UVB-induced skin aging through the absorption<br>of dipeptide forms, Gly-Pro and Pro-Hyp. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1146-1156.         | 1.3 | 28        |
| 12 | Human placenta promotes IL-8 expression through activation of JNK/SAPK and transcription factors<br>NF-κB and AP-1 in PMA-differentiated THP-1 cells. International Immunopharmacology, 2007, 7, 1488-1495.              | 3.8 | 26        |
| 13 | Lipoteichoic acid from Lactobacillus plantarum induces nitric oxide production in the presence of interferon-Î <sup>3</sup> in murine macrophages. Molecular Immunology, 2011, 48, 2170-2177.                            | 2.2 | 26        |
| 14 | Antifungal activities against Candida albicans, of cell-free supernatants obtained from probiotic<br>Pediococcus acidilactici HW01. Archives of Oral Biology, 2019, 99, 113-119.                                         | 1.8 | 26        |
| 15 | Effect of probiotic administration on gut microbiota and depressive behaviors in mice. DARU, Journal of Pharmaceutical Sciences, 2020, 28, 181-189.                                                                      | 2.0 | 26        |
| 16 | Vibrio cholerae OmpU induces IL-8 expression in human intestinal epithelial cells. Molecular<br>Immunology, 2018, 93, 47-54.                                                                                             | 2.2 | 25        |
| 17 | Staphylococcus aureus induces IL-8 expression through its lipoproteins in the human intestinal epithelial cell, Caco-2. Cytokine, 2015, 75, 174-180.                                                                     | 3.2 | 24        |
| 18 | Differential profiles of gastrointestinal proteins interacting with peptidoglycans from Lactobacillus plantarum and Staphylococcus aureus. Molecular Immunology, 2015, 65, 77-85.                                        | 2.2 | 23        |

SEOK-SEONG KANG

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gene expression profile of human peripheral blood mononuclear cells induced by Staphylococcus<br>aureus lipoteichoic acid. International Immunopharmacology, 2012, 13, 454-460.                                                 | 3.8 | 22        |
| 20 | In vitro anti-bacterial and anti-inflammatory activities of lactic acid bacteria-biotransformed<br>mulberry (Morus alba Linnaeus) fruit extract against Salmonella Typhimurium. Food Control, 2019,<br>106, 106758.             | 5.5 | 20        |
| 21 | Gene expression profiling of bovine mammary gland epithelial cells stimulated with lipoteichoic acid<br>plus peptidoglycan from Staphylococcus aureus. International Immunopharmacology, 2014, 21, 231-240.                     | 3.8 | 19        |
| 22 | Bacteriocin of Pediococcus acidilactici HW01 Inhibits Biofilm Formation and Virulence Factor<br>Production by Pseudomonas aeruginosa. Probiotics and Antimicrobial Proteins, 2020, 12, 73-81.                                   | 3.9 | 19        |
| 23 | Clostridium kogasensis sp. nov., a novel member of the genus Clostridium, isolated from soil under a corroded gas pipeline. Anaerobe, 2016, 39, 14-18.                                                                          | 2.1 | 17        |
| 24 | Inhibitory effect of bacteriocin-producing Lactobacillus brevis DF01 and Pediococcus acidilactici K10 isolated from kimchi on enteropathogenic bacterial adhesion. Food Bioscience, 2019, 30, 100425.                           | 4.4 | 17        |
| 25 | Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells<br>in the Presence of the Short-Chain Fatty Acid, Butyrate. Frontiers in Immunology, 2018, 9, 55.                           | 4.8 | 16        |
| 26 | Muramyl dipeptide potentiates staphylococcal lipoteichoic acid induction of cyclooxygenase-2 expression in macrophages. Microbes and Infection, 2014, 16, 153-160.                                                              | 1.9 | 15        |
| 27 | <i>In Vitro</i> Antibiofilm and Anti-Inflammatory Properties of Bacteriocins Produced by<br><i>Pediococcus acidilactici</i> Against <i>Enterococcus faecalis</i> . Foodborne Pathogens and<br>Disease, 2020, 17, 764-771.       | 1.8 | 15        |
| 28 | Ecklonia cava Extract Containing Dieckol Suppresses RANKL-Induced Osteoclastogenesis via MAP<br>Kinase/NF-��B Pathway Inhibition and Heme Oxygenase-1 Induction. Journal of Microbiology and<br>Biotechnology, 2019, 29, 11-20. | 2.1 | 15        |
| 29 | lgE in the absence of allergen induces the expression of monocyte chemoattractant protein-1 in the rat basophilic cell-line RBL-2H3. Molecular Immunology, 2014, 62, 114-121.                                                   | 2.2 | 10        |
| 30 | Sodium Hypochlorite Inactivates Lipoteichoic Acid of Enterococcus faecalis by Deacylation. Journal of Endodontics, 2016, 42, 1503-1508.                                                                                         | 3.1 | 9         |
| 31 | Serum amyloid A inhibits osteoclast differentiation to maintain macrophage function. Journal of<br>Leukocyte Biology, 2016, 99, 595-603.                                                                                        | 3.3 | 9         |
| 32 | Biotransformation of whey by Weissella cibaria suppresses 3T3-L1 adipocyte differentiation. Journal of<br>Dairy Science, 2021, 104, 3876-3887.                                                                                  | 3.4 | 9         |
| 33 | Anti-Biofilm Activities of Manuka Honey against Escherichia coli O157:H7. Food Science of Animal<br>Resources, 2020, 40, 668-674.                                                                                               | 4.1 | 9         |
| 34 | Bacteriocin-Like Inhibitory Substance (BLIS) Activity of Enterococcus faecium DB1 Against Biofilm<br>Formation by Clostridium perfringens. Probiotics and Antimicrobial Proteins, 2021, 13, 1452-1457.                          | 3.9 | 8         |
| 35 | Bioconversion Products of Whey by Lactic Acid Bacteria Exert Anti-Adipogenic Effect. Food Science of Animal Resources, 2021, 41, 145-152.                                                                                       | 4.1 | 8         |
| 36 | Whey fermented by Enterococcus faecalis M157 exhibits antiinflammatory and antibiofilm activities against oral pathogenic bacteria. Journal of Dairy Science, 2022, 105, 1900-1912.                                             | 3.4 | 8         |

SEOK-SEONG KANG

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | IFN-Î <sup>3</sup> renders human intestinal epithelial cells responsive to lipopolysaccharide of Vibrio cholerae by<br>down-regulation of DMBT1. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35,<br>345-354. | 1.6 | 7         |
| 38 | TLR2, but not TLR4, plays a predominant role in the immune responses to cholera vaccines. Journal of Leukocyte Biology, 2015, 98, 661-669.                                                                                           | 3.3 | 7         |
| 39 | Human salivary proteins with affinity to lipoteichoic acid of Enterococcus faecalis. Molecular<br>Immunology, 2016, 77, 52-59.                                                                                                       | 2.2 | 7         |
| 40 | Comprehensive Evaluation of Microbiological and Physicochemical Properties of Commercial Drinking Yogurts in Korea. Food Science of Animal Resources, 2019, 39, 820-830.                                                             | 4.1 | 7         |
| 41 | Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term<br>immunological memory response. Molecular Immunology, 2015, 67, 492-500.                                                                 | 2.2 | 6         |
| 42 | Inhibitory Effect of Lipoteichoic Acid Derived from Three Lactobacilli on Flagellin-Induced IL-8<br>Production in Porcine Peripheral Blood Mononuclear Cells. Probiotics and Antimicrobial Proteins,<br>2021, 13, 72-79.             | 3.9 | 6         |
| 43 | Evaluation of Anticoagulants for Serologic Assays of Cholera Vaccination. Vaccine Journal, 2014, 21, 854-858.                                                                                                                        | 3.1 | 5         |
| 44 | Skimmed milk fermented by lactic acid bacteria inhibits adipogenesis in 3T3-L1 pre-adipocytes by<br>downregulating PPARγ <i>via</i> TNF-α induction <i>in vitro</i> . Food and Function, 2021, 12, 8605-8614.                        | 4.6 | 5         |
| 45 | Anti-biofilm activity of N-Mannich bases of berberine linking piperazine against Listeria<br>monocytogenes. Food Control, 2021, 121, 107668.                                                                                         | 5.5 | 4         |
| 46 | Pharmaceutical Importance of Some Promising Plant Species with Special Reference to the Isolation<br>and Extraction of Bioactive Compounds: A Review. Current Pharmaceutical Biotechnology, 2022, 23,<br>15-29.                      | 1.6 | 4         |
| 47 | Effects of Spore-Displayed p75 Protein from Lacticaseibacillus rhamnosus GG on the Transcriptional<br>Response of HT-29 Cells. Microorganisms, 2022, 10, 1276.                                                                       | 3.6 | 4         |
| 48 | Anti-biofilm Effect of Bioconversion of Whey by Lactic Acid Bacteria against Foodborne Pathogenic<br>Bacteria. Current Topic in Lactic Acid Bacteria and Probiotics, 2020, 6, 25-31.                                                 | 0.4 | 3         |
| 49 | Anti-bacterial and anti-inflammatory activities of lactic acid bacteria-bioconversioned indica rice<br>(Oryza sativa L.) extract. Chemical and Biological Technologies in Agriculture, 2022, 9, .                                    | 4.6 | 3         |
| 50 | Functional Properties of Yogurt Fermented by Bacteriocin-producing Pediococcus acidilactici.<br>Journal of Dairy Science and Biotechnology, 2020, 38, 154-160.                                                                       | 0.3 | 2         |
| 51 | Validation of avenanthramide and other phenolic compounds in oats and sprouted oats and their antimicrobial properties against Escherichia coli O157:H7. Food Science and Biotechnology, 2022, 31, 1145-1155.                        | 2.6 | 2         |
| 52 | Protein profiles in mucosal and systemic compartments in response to Vibrio cholerae in a mouse pulmonary infection model. Microbial Pathogenesis, 2015, 86, 10-17.                                                                  | 2.9 | 0         |
| 53 | Antimicrobial Effects of Lactic Acid Bacteria Isolated from Tibetan Yogurt against Foodborne Pathogenic Bacteria. Journal of Dairy Science and Biotechnology, 2021, 39, 121-127.                                                     | 0.3 | 0         |
| 54 | Antimicrobial Effect of Lactic Acid Bacteria Isolated from Fermented Foods of Korean Temples.<br>Current Topic in Lactic Acid Bacteria and Probiotics, 2020, 6, 49-55.                                                               | 0.4 | 0         |