Reza Gholamipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9713855/publications.pdf

Version: 2024-02-01

471509 642732 52 647 17 23 citations h-index g-index papers 52 52 52 454 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microstructural and mechanical characterization of high energy ball milled and sintered WC–10wt%Co–xTaC nano powders. International Journal of Refractory Metals and Hard Materials, 2009, 27, 801-805.	3.8	42
2	Sintering of WC-10%Co nano powders containing TaC and VC grain growth inhibitors. Transactions of Nonferrous Metals Society of China, 2011, 21, 1080-1084.	4.2	38
3	Role of tensile elastostatic loading on atomic structure and mechanical properties of Zr55Cu30Ni5Al10 bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 753, 218-223.	5.6	37
4	Extra rejuvenation of Zr55Cu30Al10Ni5 bulk metallic glass using elastostatic loading and cryothermal treatment interaction. Journal of Non-Crystalline Solids, 2019, 506, 39-45.	3.1	34
5	Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Computational Materials Science, 2021, 186, 110025.	3.0	34
6	Microstructure and mechanical properties of a Cu-Zr based bulk metallic glass containing atomic scale chemical heterogeneities. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 433-438.	5.6	29
7	Correlation study of structural, optical and electrical properties of amorphous carbon thin films prepared by ion beam sputtering deposition technique. Applied Surface Science, 2016, 360, 52-58.	6.1	28
8	Effect of Si addition on glass-forming ability and mechanical properties of Cu–Zr–Al bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7192-7196.	5.6	26
9	Crystallization kinetics of Cu47Zr47Al6 and (Cu47Zr47Al6)99Sn1 bulk metallic glasses. Journal of Non-Crystalline Solids, 2018, 498, 272-280.	3.1	26
10	Correlation Between Plasticity and Atomic Structure Evolution of a Rejuvenated Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4743-4749.	2.2	25
11	Microstructural Evaluation during dissimilar transient liquid phase bonding of TiAl/Ni-based superalloy. Journal of Alloys and Compounds, 2020, 825, 153999.	5.5	23
12	Effect of Ge addition on mechanical properties and fracture behavior of Cu–Zr–Al bulk metallic glass. Journal of Alloys and Compounds, 2009, 484, 708-711.	5.5	22
13	Effect of vanadium substitution for zirconium on the glass forming ability and mechanical properties of a Zr65Cu17.5Ni10Al7.5 bulk metallic glass. Journal of Alloys and Compounds, 2013, 546, 41-47.	5.5	21
14	Effects of Nb minor addition on atomic structure and glass forming ability of Zr ₅₅ Cu ₃₀ Ni ₅ Al ₁₀ bulk metallic glass. Materials Research Express, 2019, 6, 065202.	1.6	20
15	Fabrication and mechanical properties of a tungsten wire reinforced Cu–Zr–Al bulk metallic glass composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3079-3084.	5.6	19
16	Planar Flow Casting of Fe71Si13.5B9Nb3Cu1Al1.5Ge1 Ribbons. Journal of Materials Engineering and Performance, 2013, 22, 2185-2190.	2.5	18
17	Giant size effect on compressive plasticity of (Zr 55 Cu 30 Al 10 Ni 5) 99 Nb 1 bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 968-975.	5.6	18
18	Inherent relation between atomic-level stresses and nanoscale heterogeneity in Zr-based bulk metallic glass under a rejuvenation process. Physica B: Condensed Matter, 2020, 595, 412390.	2.7	17

#	Article	IF	CITATIONS
19	Effect of Nb minor addition on the crystallization kinetics of Zr-Cu-Al-Ni metallic glass. Journal of Non-Crystalline Solids, 2021, 560, 120731.	3.1	16
20	Characterization of nanoscale structural heterogeneity in metallic glasses: A machine learning study. Journal of Non-Crystalline Solids, 2022, 578, 121344.	3.1	13
21	Effect of quenching wheel speed on the structure, magnetic properties and magnetoimpedance effect in Co64Fe4Ni2B19 \hat{a} xSi8Cr3Alx (x=0, 1 and 2) melt-spun ribbons. Journal of Magnetism and Magnetic Materials, 2010, 322, 2680-2683.	2.3	11
22	Study on microstructure and fracture behavior of tungsten wire reinforced Cu-based and Zr-based bulk metallic glass matrix composites. Journal of Non-Crystalline Solids, 2013, 365, 75-84.	3.1	11
23	Cu effects on coercivity and microstructural features in nanocrystalline Nd–Fe–Co–B annealed melt-spun ribbons. Physica B: Condensed Matter, 2007, 398, 51-54.	2.7	10
24	Corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5TixCx (x=0, 1.5, 3, 6) nanocomposites annealed melt-spun ribbons. Journal of Magnetism and Magnetic Materials, 2009, 321, 3391-3395.	2.3	10
25	Formation of bulk metallic glass in situ nanocomposite in (Cu50Zr43Al7)99Si1 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 553, 10-13.	5. 6	10
26	Glass forming ability and mechanical properties of Nb-containing Cu–Zr–Al based bulk metallic glasses. Transactions of Nonferrous Metals Society of China, 2013, 23, 2037-2041.	4.2	10
27	Ion beam energy dependence of surface and structural properties of amorphous carbon films deposited by IBSD method on Ni–Cu alloy. Journal of Materials Research, 2017, 32, 1258-1266.	2.6	9
28	Statistical weibull analysis of compressive fracture strength of (Zr55Cu30Al10Ni5)99Nb1 bulk metallic glass. Journal of Alloys and Compounds, 2017, 695, 2740-2744.	5 . 5	8
29	Tailoring hardness and toughness in WC–13%Co–x TiC–y TiN (x=5, 7.5–y=5, 7.5) functional gradient hardmetals (FGHMs). International Journal of Refractory Metals and Hard Materials, 2013, 38, 92-101.	3.8	6
30	Effect of Nb Content on Mechanical Behavior and Structural Properties of $W/(Zr55Cu30Al10Ni5)100\hat{a}^2x$ Nb x Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2496-2503.	2.2	6
31	Silica-Free Zirconia-Based Primary Slurry for Titanium Investment Casting. International Journal of Metalcasting, 2020, 14, 92-97.	1.9	6
32	Effects of Ti and C additions on the nanostructure and magnetic properties of (Nd, Pr)– (Fe, Co, Ga)–B melt-spun nanocomposite ribbons. Physica B: Condensed Matter, 2010, 405, 3838-3841.	2.7	5
33	Effects of infiltration parameters on mechanical and microstructural properties of tungsten wire reinforced Cu47Ti33Zr11Ni6Sn2Si1 metallic glass matrix composites. Transactions of Nonferrous Metals Society of China, 2013, 23, 1314-1321.	4.2	5
34	High-temperature compressive behavior and kinetics analysis of Al _{0.4} MnCrCoFeNi high entropy alloy. Materials Research Express, 2021, 8, 066505.	1.6	5
35	Effect of melt infiltration parameters on microstructure and mechanical properties of tungsten wire reinforced (Cu50Zr43Al7)99.5Si0.5 metallic glass matrix composite. Transactions of Nonferrous Metals Society of China, 2015, 25, 2624-2629.	4.2	4
36	Glass transition kinetics and fragility of ZrCuAlNi(Nb) metallic glasses. Intermetallics, 2022, 145, 107532.	3.9	4

#	Article	IF	Citations
37	Microstructural studies and micromagnetic analysis of nanocrystalline NdFeCoMB (M = Ga, Ge) melt-spun ribbon. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1581-1587.	2.2	3
38	Effect of Al substitution for B on magnetic and structural properties of Co-based melt-spun ribbons. Journal of Magnetism and Magnetic Materials, 2008, 320, 2259-2261.	2.3	3
39	Gas induced semi-solid process effects on microstructure and mechanical properties of 319 aluminum alloy. International Journal of Materials Research, 2015, 106, 1005-1009.	0.3	3
40	Effect of Al on the Structure and Magnetic Properties of Nanocrystalline FeSiBPCu Melt-Spun Ribbons. Transactions of the Indian Institute of Metals, 2018, 71, 35-39.	1.5	3
41	Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100â°x Nb x Composites. Journal of Materials Engineering and Performance, 2017, 26, 5571-5576.	2.5	2
42	Tuning Glass Formation and Mechanical Properties of ZrCoAl(Nb) Bulk Metallic Glass with Nb Microalloying Process. Transactions of the Indian Institute of Metals, 2021, 74, 1603.	1.5	2
43	Factors affecting strength of dissimilar TiAl/Ni–Si–B/Ni-based superalloy brazed joint. Journal of Materials Science, 2022, 57, 5275-5287.	3.7	2
44	Microstructure-magnetic properties relationships in nanocrystalline Nd-Fe-Co-Ge-B annealed ribbons. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 287-293.	1.8	1
45	Optimization of Pre-Rolling Homogenizing Heat Treatment for Cast Silicon Steel Ingots. Arabian Journal for Science and Engineering, 2012, 37, 1065-1076.	1.1	1
46	The Microstructural Characterization, Physical and Dynamic Magnetic Properties of (Ni49Fe51)100â°'xCrx (x = 0,3,7) Thin Sheets. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 323-330.	2.2	1
47	A New Role of M1 Type Dopant for Nd-Rich Nd-Fe-Co-B Nanocrystalline Ribbons. Journal of Iron and Steel Research International, 2006, 13, 215-220.	2.8	0
48	Magnetic and structural properties of rapidly quenched Nd-Fe-Co-Ge-B alloys. Physics of Metals and Metallography, 2006, 102, S24-S31.	1.0	0
49	EFFECT OF NANOCRYSTALLIZATION ANNEALING ON MAGNETIC PROPERTIES AND MAGNETOIMPEDANCE OF CO-BASE RIBBONS. International Journal of Modern Physics Conference Series, 2012, 05, 841-846.	0.7	0
50	Influence of Annealing Temperature on the Magnetic Properties of Rapidly Quenched (Nd,Pr) _{<math>2-(Fe,Co,Ga,Ti,C)<math>14B/<ii1±< ii="">-Fe Nanocomposite Ribbons. Advances in Materials Science and Engineering, 2013, 2013, 1-5.</ii1±<></math></math>}	1.8	0
51	Effect of Mischmetal Addition on Physical and Mechanical Properties of Al–Ni–Zr Melt-Spun Ribbons. Transactions of the Indian Institute of Metals, 2019, 72, 993-999.	1.5	0
52	Effect of Silver Clusters Deposition on Wettability and Optical Properties of Diamond-like Carbon Films. International Journal of Engineering, Transactions B: Applications, 2021, 34, .	0.7	0