Olga Alexeeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9711990/publications.pdf

Version: 2024-02-01

1684188 1720034 9 47 5 7 citations g-index h-index papers 9 9 9 37 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nanostructured TiO2 Films with a Mixed Phase for Perovskite Solar Cells. Russian Journal of Physical Chemistry B, 2018, 12, 663-668.	1.3	10
2	Efficient method of cyclic imides synthesis under ozone influence by the example of Îμ aprolactam oxidation reaction. Heteroatom Chemistry, 2008, 19, 661-666.	0.7	9
3	Kinetics of phenol oxidation with ozone in a thin layer on a solid surface. Kinetics and Catalysis, 2006, 47, 533-536.	1.0	6
4	Niobium-doped titanium dioxide nanoparticles for electron transport layers in perovskite solar cells. Nanosystems: Physics, Chemistry, Mathematics, 2017, , 540-545.	0.4	6
5	Ozone Modification of Nanoscale Structured Titanium Dioxide Films for Dye-Sensitized Solar Cells. Russian Journal of Physical Chemistry B, 2021, 15, 183-188.	1.3	5
6	Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 70-75.	0.4	5
7	Effect of Glycero-(9,10-trioxolane)-trialeate on the Physicochemical Properties of Non-Woven Polylactic Acid Fiber Materials. Polymers, 2021, 13, 2517.	4.5	4
8	Efficiency enhancement in planar perovskite solar cells under low-light illumination and ambient lighting. Journal of Physics: Conference Series, 2020, 1697, 012190.	0.4	2
9	Pt nanoparticle-functionalized RGO counter electrode for efficient dye-sensitized solar cells. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 637-641.	0.4	O