Shih-Yen Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/970713/publications.pdf

Version: 2024-02-01

147 papers

1,832 citations

331538
21
h-index

315616 38 g-index

147 all docs

 $\begin{array}{c} 147 \\ \text{docs citations} \end{array}$

147 times ranked 2210 citing authors

#	Article	IF	Citations
1	Optical Mode Tuning of Monolayer Tungsten Diselenide (WSe2) by Integrating with One-Dimensional Photonic Crystal through Exciton–Photon Coupling. Nanomaterials, 2022, 12, 425.	1.9	3
2	Nanometer-thick copper films with low resistivity grown on 2D material surfaces. Scientific Reports, 2022, 12, 1823.	1.6	5
3	Layered Graphene Growth Directly on Sapphire Substrates for Applications. ACS Omega, 2022, 7, 13128-13133.	1.6	6
4	Transfer current in p-type graphene/MoS2 heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 125, 114383.	1.3	2
5	Large Surface Photovoltage of WS ₂ /MoS ₂ and MoS ₂ /WS ₂ Vertical Hetero-bilayers. ACS Applied Electronic Materials, 2021, 3, 2601-2606.	2.0	13
6	MoS2 with Stable Photoluminescence Enhancement under Stretching via Plasmonic Surface Lattice Resonance. Nanomaterials, 2021, 11, 1698.	1.9	4
7	Charge Storage of Isolated Monolayer Molybdenum Disulfide in Epitaxially Grown MoS ₂ /Graphene Heterostructures for Memory Device Applications. ACS Applied Materials & Interfaces, 2021, 13, 45864-45869.	4.0	5
8	Top-gate transistors fabricated on epitaxially grown molybdenum disulfide and graphene hetero-structures. Applied Physics Express, 2021, 14, 125502.	1.1	2
9	Highly conductive nanometer-thick gold films grown on molybdenum disulfide surfaces for interconnect applications. Scientific Reports, 2020, 10, 14463.	1.6	8
10	Ultrafast Exciton Dynamics in Scalable Monolayer MoS ₂ Synthesized by Metal Sulfurization. ACS Omega, 2020, 5, 10725-10730.	1.6	23
11	Photonic Crystal Circular Nanobeam Cavity Laser with Type-II GaSb/GaAs Quantum Rings as Gain Material. Scientific Reports, 2020, 10, 4757.	1.6	3
12	Van der Waals Epitaxy of Large-Area and Single-Crystalline Gold Films on MoS ₂ for Low-Contact-Resistance 2D–3D Interfaces. ACS Applied Nano Materials, 2020, 3, 2997-3003.	2.4	8
13	Internal Fields in Multilayer WS 2 /MoS 2 Heterostructures Epitaxially Grown on Sapphire Substrates. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000033.	0.8	1
14	Tungsten Diselenide Top-gate Transistors with Multilayer Antimonene Electrodes: Gate Stacks and Epitaxially Grown 2D Material Heterostructures. Scientific Reports, 2020, 10, 5967.	1.6	4
15	Stable Photoluminescence Enhancement of MoS2 Buried in PDMS via Plasmonic Surface Lattice Resonance., 2020,,.		O
16	Luminescence enhancement and dual-color emission of stacked mono-layer 2D materials. Nanotechnology, 2020, 31, 365702.	1.3	4
17	Strain reduced and photoluminescence enhanced of MoS2 emitters on three-dimensional substrate., 2020, , .		O
18	Multi-layer elemental 2D materials: antimonene, germanene and stanene grown directly on molybdenum disulfides. Semiconductor Science and Technology, 2019, 34, 105020.	1.0	19

#	Article	IF	CITATIONS
19	Large-Area and Strain-Reduced Two-Dimensional Molybdenum Disulfide Monolayer Emitters on a Three-Dimensional Substrate. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26243-26249.	4.0	14
20	The atomic layer etching of molybdenum disulfides using low-power oxygen plasma. Semiconductor Science and Technology, 2019, 34, 045007.	1.0	9
21	Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure. ACS Applied Materials & Enterfaces, 2018, 10, 15058-15064.	4.0	43
22	Scalable MoS ₂ /graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications. Semiconductor Science and Technology, 2018, 33, 025007.	1.0	11
23	Enhanced Absorption Due to Formation of Quasi-Bound States in Type-II Coupled Quantum Rings. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-7.	1.9	0
24	Current Enhancement and Bipolar Current Modulation of Top-Gate Transistors Based on Monolayer MoS2 on Three-Layer WxMo1–xS2. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 24733-24738.	4.0	2
25	Defect formation and modulation during patterning supported graphene sheets using focused ion beams. Materials Today Communications, 2018, 17, 60-68.	0.9	8
26	Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states. , $2018, , .$		0
27	Luminescence Enhancement and Enlarged Dirac Point Shift of MoS2/Graphene Hetero-Structure Photodetectors With Postgrowth Annealing Treatment. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 101-105.	1.9	5
28	Layer number controllability of transition-metal dichalcogenides and the establishment of hetero-structures by using sulfurization of thin transition metal films. Journal Physics D: Applied Physics, 2017, 50, 064001.	1.3	13
29	Type-I to Type-II Transformation of Hybrid Quantum Nanostructures. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-7.	1.9	0
30	The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment. Scientific Reports, 2017, 7, 42146.	1.6	46
31	Dual-cut graphene transistors with constant-current regions fabricated by the atomic force microscope anode oxidation. Japanese Journal of Applied Physics, 2017, 56, 010307.	0.8	0
32	Atomic layer etchings of transition metal dichalcogenides with post healing procedures: equivalent selective etching of 2D crystal hetero-structures. 2D Materials, 2017, 4, 034001.	2.0	13
33	Preparation of Large-area Vertical 2D Crystal Hetero-structures Through the Sulfurization of Transition Metal Films for Device Fabrication. Journal of Visualized Experiments, 2017, , .	0.2	0
34	Type-II Superlattice Infrared Photodetectors With Graphene Transparent Electrodes. IEEE Photonics Technology Letters, 2017, 29, 1691-1694.	1.3	4
35	Enhanced responsivity and detectivity values of short 30-period InAs/GaSb type-II infrared photodetectors with reduced device areas. Japanese Journal of Applied Physics, 2016, 55, 04EH07.	0.8	3
36	Enhancement of field-effect mobility in molybdenum-disulfide transistor through the treatment of low-power oxygen plasma. Japanese Journal of Applied Physics, 2016, 55, 090302.	0.8	6

#	Article	IF	Citations
37	InN nanopillar devices with strong photoresponse. , 2016, , .		О
38	Multiple-layered type-II GaSb/GaAs quantum ring solar cells under concentrated solar illumination. , 2016, , .		0
39	Establishment of 2D Crystal Heterostructures by Sulfurization of Sequential Transition Metal Depositions: Preparation, Characterization, and Selective Growth. Nano Letters, 2016, 16, 7093-7097.	4.5	51
40	A Single InN Nanopillar Photodetector with Extended Infrared Response Grown by MOCVD. , 2016, , .		0
41	Lasing action and extraordinary reduction in long radiative lifetime of type-II GaSb/GaAs quantum dots using circular photonic crystal nanocavity. Applied Physics Letters, 2015, 107, .	1.5	9
42	InN-based heterojunction photodetector with extended infrared response. Optics Express, 2015, 23, 31150.	1.7	21
43	Optical properties of InN-based photodetection devices. , 2015, , .		0
44	Positioning effect of type-II GaSb/GaAs quantum ring layer on solar cell performances., 2015,,.		2
45	Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high ON/OFF ratio. Journal Physics D: Applied Physics, 2015, 48, 435101.	1.3	17
46	Transferring-free and large-area graphitic carbon film growth by using molecular beam epitaxy at low growth temperature. Journal of Crystal Growth, 2015, 425, 177-180.	0.7	1
47	GaSb/GaAs quantum dots and rings grown under periodical growth mode by using molecular beam epitaxy. Journal of Crystal Growth, 2015, 425, 283-286.	0.7	2
48	Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition. Journal Physics D: Applied Physics, 2015, 48, 295106.	1.3	13
49	$11\hat{-}1\frac{1}{4}$ m InAs/GaAs quantum-dot light-emitting transistors grown by molecular beam epitaxy. Optics Letters, 2015, 40, 3747.	1.7	1
50	Long-Wavelength In-Plane Gate InAs Quantum-Dot Phototransistors. IEEE Photonics Technology Letters, 2015, 27, 261-263.	1.3	1
51	A ZnO/InN/GaN Heterojunction Photodetector with Extended Infrared Response. , 2015, , .		0
52	Fermi-level shifts in graphene transistors with dual-cut channels scraped by atomic force microscope tips. Applied Physics Letters, 2014, 104, 023511.	1.5	4
53	Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS2/graphene hetero-structures by chemical vapor depositions. Applied Physics Letters, 2014, 105, .	1.5	41
54	The growth mechanisms of graphene directly on sapphire substrates by using the chemical vapor deposition. Journal of Applied Physics, 2014, 115, .	1.1	29

#	Article	IF	CITATIONS
55	Field effect of in-plane gates with different gap sizes on the Fermi level tuning of graphene channels. Applied Physics Letters, 2014, 104, 183503.	1.5	0
56	Type II GaSb quantum ring solar cells under concentrated sunlight. Optics Express, 2014, 22, A359.	1.7	17
57	High temperature operation In(Ga)As quantum dot infrared photodetector focal plane arrays passivated with 6.5 nm-thick Al _{20_{3 layer. International Journal of Nanotechnology, 2014, 11, 345.}}	0.1	O
58	800 meV localization energy in GaSb/GaAs/Al0.3Ga0.7As quantum dots. Applied Physics Letters, 2013, 102, .	1.5	38
59	Long-wavelength electroluminescence of InGaAs-capped type-II GaSb/GaAs quantum-rings at room temperature. Journal of Crystal Growth, 2013, 378, 571-575.	0.7	1
60	Improved 1.3-\$mu{m m}\$ Electroluminescence of InGaAs-Capped Type-II GaSb/GaAs Quantum Rings at Room Temperature. IEEE Photonics Technology Letters, 2013, 25, 97-99.	1.3	4
61	Temperature-dependent photoluminescence and carrier dynamics of standard and coupled type-II GaSb/GaAs quantum rings. Journal of Crystal Growth, 2013, 378, 426-429.	0.7	2
62	Graphene films grown at low substrate temperature and the growth model by using MBE technique. Journal of Crystal Growth, 2013, 378, 333-336.	0.7	2
63	The operation principle of the well in quantum dot stack infrared photodetector. Journal of Applied Physics, 2013, 114, 244504.	1.1	3
64	In-Plane Gate Transistors for Photodetector Applications. IEEE Electron Device Letters, 2013, 34, 780-782.	2.2	5
65	Memory device application of wide-channel in-plane gate transistors with type-II GaAsSb-capped InAs quantum dots. Applied Physics Letters, 2013, 103, 143502.	1.5	9
66	The formation mechanisms and optical characteristics of GaSb quantum rings. Journal of Applied Physics, 2013, 114, .	1.1	8
67	6.5 nm-thick Al <inf>2</inf> O <inf>3</inf> Surface passivated layer grown on two stacks of 10-period InGaAs and GaAs-capped InAs Quantum Dot Infrared Photodetector Focal Plane Arrays for high temperature operation. , 2013, , .		O
68	Electronic Properties and Density of States of Self-Assembled GaSb/GaAs Quantum Dots. Journal of Nanotechnology, 2013, 2013, 1-5.	1.5	2
69	Long Photon Lifetime from Microdisk Cavity Laser with Type II GaSb/GaAs Quantum Dots. , 2013, , .		O
70	Low-temperature grown graphene films by using molecular beam epitaxy. Applied Physics Letters, 2012, 101, .	1.5	28
71	Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications. Applied Physics Letters, 2012, 101, .	1.5	21
72	Performance Improvement of AlGaAs/GaAs QWIP by \${m NH}_{3}\$ Plasma Treatment. IEEE Journal of Quantum Electronics, 2012, 48, 922-926.	1.0	7

#	Article	IF	CITATIONS
73	Broadband InGaAs-capped InAs/GaAs quantum-dot infrared photodetector with Bi-modal dot height distributions. Journal of Applied Physics, 2012, 112, 034508.	1.1	3
74	Room-Temperature Electro-Luminescence of Type-II GaSb/GaAs Quantum Rings. IEEE Photonics Technology Letters, 2012, 24, 1203-1205.	1.3	19
75	In-Plane Gate Transistors With a 40-\$muhbox{m}\$-Wide Channel Width. IEEE Electron Device Letters, 2012, 33, 1129-1131.	2.2	8
76	The influence of background As on GaSb/GaAs quantum dots and its application in infrared photodetectors. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 314-317.	0.8	7
77	Painted graphitic carbon films formed underneath Ni templates. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 179-182.	0.8	0
78	High-Temperature Operation GaSb/GaAs Quantum-Dot Infrared Photodetectors. IEEE Photonics Technology Letters, 2011, 23, 106-108.	1.3	15
79	Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters, 2011, 11, 3612-3616.	4.5	302
80	GaSb/GaAs quantum dots with type-II band alignments prepared by molecular beam epitaxy for device applications. , $2011, , .$		0
81	Influence of as on the Morphologies and Optical Characteristics of GaSb/GaAs Quantum Dots. IEEE Journal of Quantum Electronics, 2011, 47, 335-339.	1.0	19
82	Wavelength-tunable InGaAs-capped quantum-dot infrared photodetectors for multi-color detection. Infrared Physics and Technology, 2011, 54, 220-223.	1.3	1
83	The transition mechanisms of type-II GaSb/GaAs quantum-dot infrared light-emitting diodes. Journal of Crystal Growth, 2011, 323, 466-469.	0.7	11
84	Graphitic carbon film formation under Ni templates by radio-frequency sputtering for transparent electrode applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, $2011, 29, \ldots$	0.6	3
85	Compact microdisk cavity laser with type-II GaSb/GaAs quantum dots. Applied Physics Letters, 2011, 98, 051105.	1.5	21
86	Investigations for InAs/GaAs multilayered quantum-dot structure treated by high energy proton irradiation. Thin Solid Films, 2010, 518, 7425-7428.	0.8	7
87	The fabrication of nanomesas and nanometal contacts by using atomic force microscopy lithography. Journal of Applied Physics, 2010, 108, 094316.	1.1	3
88	Transition mechanism of InAs/GaAs quantum-dot infrared photodetectors with different InAs coverages. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C3G28-C3G31.	0.6	3
89	Site-controlled self-assembled InAs quantum dots grown on GaAs substrates. Nanotechnology, 2010, 21, 295304.	1.3	4
90	Wavelength-Tunable InGaAs-Capped Quantum-Dot Infrared Photodetectors. IEEE Photonics Technology Letters, 2010, 22, 227-229.	1.3	0

#	Article	IF	Citations
91	Two-Color Qauntum-Dot Infrared Photodetectors With Periodic Cross Metal Hole Array Contact. IEEE Photonics Technology Letters, 2010, 22, 577-579.	1.3	3
92	Broadband Quantum-Dot Infrared Photodetector. IEEE Photonics Technology Letters, 2010, 22, 963-965.	1.3	1
93	Room-temperature operation type-II GaSb/GaAs quantum-dot infrared light-emitting diode. Applied Physics Letters, 2010, 96, .	1.5	55
94	Room-temperature operation type-II GaSb/GaAs quantum-dot infrared light-emitting diode. , 2010, , .		1
95	In-Plane Gate Transistors Fabricated by Using Atomic Force Microscopy Anode Oxidation. IEEE Electron Device Letters, 2010, , .	2.2	8
96	Voltage-tunable two-color quantum-dot infrared photodetectors. Applied Physics Letters, 2009, 95, 123504.	1.5	16
97	High-Responsivity InGaAs/InP Quantum-Well Infrared Photodetectors Prepared by Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2009, 48, 04C108.	0.8	0
98	The influence of interface roughness on the normal incident absorption of quantum-well infrared photodetectors. Thin Solid Films, 2009, 517, 1799-1802.	0.8	3
99	The transition mechanisms of quantum-dot/quantum-well mixed-mode infrared photodetectors. Infrared Physics and Technology, 2009, 52, 268-271.	1.3	1
100	InGaAs-Capped InAs–GaAs Quantum-Dot Infrared Photodetectors Operating in the Long-Wavelength Infrared Range. IEEE Photonics Technology Letters, 2009, 21, 1332-1334.	1.3	12
101	The influence of In composition on InGaAs-capped InAs/GaAs quantum-dot infrared photodetectors. Journal of Applied Physics, 2009, 106, .	1.1	7
102	Enhancement of operation temperature of InAsâ-GaAs quantum-dot infrared photodetectors with hydrogen-plasma treatment. Journal of Vacuum Science & Technology B, 2009, 27, 2102.	1.3	1
103	Enhanced Normal-Incident Absorption of Quantum-Dot Infrared Photodetectors With Smaller Quantum Dots. IEEE Photonics Technology Letters, 2008, 20, 1240-1242.	1.3	9
104	Single-Period InAs–GaAs Quantum-Dot Infrared Photodetectors. IEEE Photonics Technology Letters, 2008, 20, 1575-1577.	1.3	0
105	Quantum-dot/quantum-well mixed-mode infrared photodetectors for multicolor detection. Applied Physics Letters, 2008, 92, 253510.	1.5	3
106	Self-ordered InGaAs quantum dots grown at low growth rates. Journal of Applied Physics, 2008, 103, 044301.	1.1	2
107	Tailoring detection wavelength of InGaAs quantum wire infrared photodetector. Journal of Vacuum Science & Technology B, 2008, 26, 1140.	1.3	2
108	Influence of As-stabilized surface on the formation of InAsâ^•GaAs quantum dots. Journal of Vacuum Science & Technology B, 2008, 26, 956.	1.3	0

#	Article	IF	Citations
109	The transition mechanisms of a ten-period InAsâ-GaAs quantum-dot infrared photodetector. Journal of Vacuum Science & Technology B, 2008, 26, 1831-1833.	1.3	3
110	Transport mechanisms and the effects of organic layer thickness on the performance of organic Schottky diodes. Journal of Vacuum Science & Technology B, 2007, 25, 43.	1.3	9
111	Influence of thin metal base thickness on the performance of CuPc vertical organic triodes. Applied Physics Letters, 2007, 90, 153509.	1.5	18
112	Formation and Characterization of 1.5-Monolayer Self-Assembled InAs/GaAs Quantum Dots Using Postgrowth Annealing. IEEE Nanotechnology Magazine, 2007, 6, 589-594.	1.1	6
113	InGaAs quantum wire infrared photodetector. Applied Physics Letters, 2007, 91, .	1.5	20
114	Influences of silicon doping in quantum dot layers on optical characteristics of InAs/GaAs quantum dot infrared photodetector. Thin Solid Films, 2007, 515, 4459-4461.	0.8	4
115	Temperature-insensitive detectivity of 5-pair InAs/GaAs quantum-dot infrared photodetectors with asymmetric device structure. Journal of Crystal Growth, 2007, 301-302, 817-820.	0.7	5
116	The influence of InAs coverage on the performances self-assembled InGaAs quantum rings. Journal of Crystal Growth, 2007, 301-302, 841-845.	0.7	3
117	Pentacene-Based Planar- and Vertical-Type Organic Thin-Film Transistor. IEEE Transactions on Electron Devices, 2007, 54, 1633-1636.	1.6	14
118	All-organic hot-carrier triodes with thin-film metal base. Applied Physics Letters, 2006, 89, 183508.	1.5	13
119	High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array. IEEE Photonics Technology Letters, 2006, 18, 986-988.	1.3	61
120	Vertical organic triodes with a high current gain operated in saturation region. Applied Physics Letters, 2006, 89, 183511.	1.5	22
121	Influence of doping density on the normal incident absorption of quantum-dot infrared photodetectors. Applied Physics Letters, 2006, 88, 173511.	1.5	27
122	Thin single-crystal Sc2O3 films epitaxially grown on Si (111)â€"structure and electrical properties. Journal of Crystal Growth, 2005, 278, 638-642.	0.7	24
123	MBE-grown high gate dielectrics of HfO2 and (Hf–Al)O2 for Si and Ill–V semiconductors nano-electronics. Journal of Crystal Growth, 2005, 278, 619-623.	0.7	26
124	High responsivity quantum-dot infrared photodetector with blocking layers at both sides of the structure. Journal of Crystal Growth, 2005, 278, 351-354.	0.7	5
125	Singlemode (SMSR>40â€dB) proton-implanted photonic crystal vertical-cavity surface-emitting lasers. Electronics Letters, 2005, 41, 326.	0.5	24
126	High-performance 30-period quantum-dot infrared photodetector. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1129.	1.6	3

#	Article	IF	CITATIONS
127	Temperature dependence of carrier dynamics for InAsâ^•GaAs quantum dot infrared photodetectors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1909.	1.6	8
128	Single mode (SMSR $>$ 40 dB) proton-implanted photonic crystal vertical-cavity surface-emitting lasers. , 2005, , .		0
129	Device simulation for GaAsâ^•AlGaAs superlattice infrared photodetector with a single current blocking layer. Journal of Applied Physics, 2005, 97, 064910.	1.1	5
130	Quantum-dot infrared photodetectors with p-type-doped GaAs barrier Layers. IEEE Photonics Technology Letters, 2005, 17, 2409-2411.	1.3	10
131	Effect of Silicon Dopant on the Performance of InAs/GaAs Quantum-Dot Infrared Photodetectors. Japanese Journal of Applied Physics, 2004, 43, L167-L169.	0.8	11
132	Surface morphology and photoluminescence of InAs quantum dots grown on $[11-0]$ -oriented streaked islands under ultra-low V/III ratio. IEEE Nanotechnology Magazine, 2004, 3, 275-280.	1.1	2
133	Transport characteristics of InAs/GaAs quantum-dot infrared photodetectors. Applied Physics Letters, 2003, 83, 752-754.	1.5	20
134	Surface morphology and photoluminescence of InAs quantum dots grown on [110]-oriented streaked-islands under ultralow V/III ratio. , 2003, , .		0
135	Integral and fractional charge filling in a InAs/GaAs quantum dot p–i–n diode by capacitance–voltage measurement. Journal of Applied Physics, 2002, 91, 6700.	1.1	2
136	Structural and optical properties of silicon–germanium alloy nanoparticles. Journal of Applied Physics, 2002, 91, 2322-2325.	1.1	15
137	Structural and optical properties of germanium nanoparticles. Journal of Applied Physics, 2002, 91, 1525-1528.	1.1	9
138	InAs/GaAs quantum dot infrared photodetector (QDIP) with double Al/sub 0.3/Ga/sub 0.7/As blocking barriers. IEEE Transactions on Electron Devices, 2002, 49, 1341-1347.	1.6	33
139	<title>Investigation of supperlattice infrared photodetectors to reach the background-limited performance at high temperature</title> ., 2001, 4288, 151.		1
140	Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector. Applied Physics Letters, 2001, 78, 2428-2430.	1.5	142
141	Title is missing!. Journal of Nanoparticle Research, 2001, 3, 489-492.	0.8	5
142	Comparison of InAs/GaAs Quantum Dot Infrared Photodetector and GaAs/(AlGa)As Superlattice Infrared Photodetector. Japanese Journal of Applied Physics, 2001, 40, L1290-L1292.	0.8	31
143	High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7As blocking layer. Applied Physics Letters, 2001, 78, 2784-2786.	1.5	61
144	Observation of self-assembled InAs/GaAs quantum dot structure with temperature-dependent photoluminescence and measurement of electrical characteristics., 2000, 4078, 115.		1

SHIH-YEN LIN

#	Article	IF	CITATIONS
145	Spherical SiGe quantum dots prepared by thermal evaporation. Applied Physics Letters, 2000, 77, 4328-4329.	1.5	11
146	High temperature operated ($\hat{a}^1/4250$ K) photovoltaic-photoconductive (PV-PC) mixed-mode InAs/GaAs quantum dot infrared photodetector. , 0, , .		2
147	Temperature-stable (wavelength â^¼ 1 μm) InAs/GaAs quantum dot light-emitting diode. , 0, , .		O