Patrizia Limonta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/970628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Cancer Drug Resistance: Emerging Biomarkers and Promising Targets to Overcome Tumor Progression. Cancers, 2022, 14, 1614.	3.7	15
2	Molecular mechanisms and genetic alterations in prostate cancer: From diagnosis to targeted therapy. Cancer Letters, 2022, 534, 215619.	7.2	18
3	Exploiting the Metabolic Consequences of PTEN Loss and Akt/Hexokinase 2 Hyperactivation in Prostate Cancer: A New Role for δ-Tocotrienol. International Journal of Molecular Sciences, 2022, 23, 5269.	4.1	10
4	Melanoma Stem Cells Educate Neutrophils to Support Cancer Progression. Cancers, 2022, 14, 3391.	3.7	15
5	Cancer Stem Cells—Key Players in Tumor Relapse. Cancers, 2021, 13, 376.	3.7	74
6	Ca2+ overload- and ROS-associated mitochondrial dysfunction contributes to δ-tocotrienol-mediated paraptosis in melanoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 277-292.	4.9	39
7	Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells, 2021, 10, 1133.	4.1	13
8	In Vitro 3D Cultures to Model the Tumor Microenvironment. Cancers, 2021, 13, 2970.	3.7	40
9	The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radical Biology and Medicine, 2021, 176, 203-221.	2.9	20
10	Î′â€Tocotrienol sensitizes and reâ€sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPKâ€mediated apoptosis. Cell Proliferation, 2021, 54, e13111.	5.3	24
11	Beneficial effects of δ-tocotrienol against oxidative stress in osteoblastic cells: studies on the mechanisms of action. European Journal of Nutrition, 2020, 59, 1975-1987.	3.9	24
12	The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188338.	7.4	79
13	Mitochondrial functional and structural impairment is involved in the antitumor activity of δ-tocotrienol in prostate cancer cells. Free Radical Biology and Medicine, 2020, 160, 376-390.	2.9	17
14	Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. International Journal of Molecular Sciences, 2020, 21, 6806.	4.1	34
15	Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. International Journal of Molecular Sciences, 2020, 21, 9511.	4.1	23
16	Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells, 2020, 9, 460.	4.1	60
17	Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. Journal of Cellular Physiology, 2019, 234, 1147-1164.	4.1	45
18	Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Seminars in Cancer Biology, 2019, 59, 221-235.	9.6	39

Patrizia Limonta

#	Article	IF	CITATIONS
19	New insights in melanoma biology: Running fast towards precision medicine. Seminars in Cancer Biology, 2019, 59, 161-164.	9.6	2
20	Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Seminars in Cancer Biology, 2019, 59, 266-282.	9.6	23
21	Role of Endoplasmic Reticulum Stress in the Anticancer Activity of Natural Compounds. International Journal of Molecular Sciences, 2019, 20, 961.	4.1	93
22	Tocotrienols and Cancer: From the State of the Art to Promising Novel Patents. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 5-18.	1.6	19
23	Î′â€Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Proliferation, 2019, 52, e12576.	5.3	69
24	Epithelial-To-Mesenchymal Transition Markers and CD44 Isoforms Are Differently Expressed in 2D and 3D Cell Cultures of Prostate Cancer Cells. Cells, 2019, 8, 143.	4.1	46
25	Targeting melanoma stem cells with the Vitamin E derivative δ-tocotrienol. Scientific Reports, 2018, 8, 587.	3.3	46
26	Semi-preparative HPLC purification of δ-tocotrienol (δ-T3) from <i>Elaeis guineensis</i> Jacq. and <i>Bixa orellana</i> L. and evaluation of its <i>in vitro</i> anticancer activity in human A375 melanoma cells. Natural Product Research, 2018, 32, 1130-1135.	1.8	24
27	GnRH in the Human Female Reproductive Axis. Vitamins and Hormones, 2018, 107, 27-66.	1.7	39
28	Editorial (Thematic Issue: Novel Therapeutic Strategies for Castration-resistant Prostate Cancer:) Tj ETQq0 0 0 rgl	BT /Qverlo 0.3	ck 10 Tf 50 3
29	Vitamin E Î'-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells. Scientific Reports, 2016, 6, 30502.	3.3	56
30	GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Human Reproduction Update, 2016, 22, 358-381.	10.8	156
31	Oxime bond-linked daunorubicin-GnRH-III bioconjugates exert antitumor activity in castration-resistant prostate cancer cells via the type I GnRH receptor. International Journal of Oncology, 2015, 46, 243-253.	3.3	16
32	Estrogen Receptor Î ² Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS ONE, 2015, 10, e0134396.	2.5	38
33	FROM EMERGING BIOLOGICAL INSIGHTS TO NOVEL TREATMENT STRATEGIES IN PROSTATE CANCER. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2014, , .	0.0	0
34	Gonadotropin-Releasing Hormone Agonists Sensitize, and Resensitize, Prostate Cancer Cells to Docetaxel in a p53-Dependent Manner. PLoS ONE, 2014, 9, e93713.	2.5	14
35	Targeting Hormonal Signaling Pathways in Castration Resistant Prostate Cancer. Recent Patents on Anti-Cancer Drug Discovery, 2014, 9, 267-285.	1.6	10
36	Gonadotropin-releasing hormone receptors as molecular therapeutic targets in prostate cancer: Current options and emerging strategies. Cancer Treatment Reviews, 2013, 39, 647-663.	7.7	56

PATRIZIA LIMONTA

#	Article	IF	CITATIONS
37	Castration Resistant Prostate Cancer: From Emerging Molecular Pathways to Targeted Therapeutic Approaches. Clinical Cancer Drugs, 2013, 1, 11-27.	0.3	1
38	GnRH Receptors in Cancer: From Cell Biology to Novel Targeted Therapeutic Strategies. Endocrine Reviews, 2012, 33, 784-811.	20.1	137
39	Molecular mechanisms of the antimetastatic activity of nuclear clusterin in prostate cancer cells. International Journal of Oncology, 2011, 39, 225-34.	3.3	8
40	Evaluation of a Stable Gonadotropin-Releasing Hormone Analog in Mice for the Treatment of Endocrine Disorders and Prostate Cancer. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 613-623.	2.5	17
41	Dual Targeting of Tumor and Endothelial Cells by Gonadotropin-Releasing Hormone Agonists to Reduce Melanoma Angiogenesis. Endocrinology, 2010, 151, 4643-4653.	2.8	15
42	Type I Gonadotropin-Releasing Hormone Receptor Mediates the Antiproliferative Effects of GnRH-II on Prostate Cancer Cells. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1761-1767.	3.6	36
43	miR-205 Exerts Tumor-Suppressive Functions in Human Prostate through Down-regulation of Protein Kinase Cε. Cancer Research, 2009, 69, 2287-2295.	0.9	334
44	Novel insights into GnRH receptor activity: Role in the control of human glioblastoma cell proliferation. Oncology Reports, 2009, 21, 1277-82.	2.6	18
45	Clusterin Isoforms Differentially Affect Growth and Motility of Prostate Cells: Possible Implications in Prostate Tumorigenesis. Cancer Research, 2007, 67, 10325-10333.	0.9	53
46	Gonadotropin-releasing hormone agonists reduce the migratory and the invasive behavior of androgen-independent prostate cancer cells by interfering with the activity of IGF-I. International Journal of Oncology, 2007, 30, 261.	3.3	6
47	Gonadotropin-releasing hormone agonists reduce the migratory and the invasive behavior of androgen-independent prostate cancer cells by interfering with the activity of IGF-I. International Journal of Oncology, 2007, 30, 261-71.	3.3	4
48	Gonadotropin-Releasing Hormone (GnRH) Receptors in Tumors: a New Rationale for the Therapeutical Application of GnRH Analogs in Cancer Patients?. Current Cancer Drug Targets, 2006, 6, 257-269.	1.6	54
49	Activation of the orphan nuclear receptor RORα counteracts the proliferative effect of fatty acids on prostate cancer cells: Crucial role of 5-lipoxygenase. International Journal of Cancer, 2004, 112, 87-93.	5.1	45
50	The biology of gonadotropin hormone-releasing hormone: role in the control of tumor growth and progression in humans. Frontiers in Neuroendocrinology, 2003, 24, 279-295.	5.2	114
51	Inhibitory activity of luteinizing hormone-releasing hormone on tumor growth and progression Endocrine-Related Cancer, 2003, 10, 161-167.	3.1	35
52	Locally Expressed LHRH Receptors Mediate the Oncostatic and Antimetastatic Activity of LHRH Agonists on Melanoma Cells. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3791-3797.	3.6	53
53	Locally Expressed LHRH Receptors Mediate the Oncostatic and Antimetastatic Activity of LHRH Agonists on Melanoma Cells. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3791-3797.	3.6	14
54	Oncostatic activity of a thiazolidinedione derivative on human androgen-dependent prostate cancer cells. International Journal of Cancer, 2001, 92, 733-737.	5.1	20

PATRIZIA LIMONTA

#	Article	IF	CITATIONS
55	Activation of the orphan nuclear receptor ROR? induces growth arrest in androgen-independent DU 145 prostate cancer cells. Prostate, 2001, 46, 327-335.	2.3	25
56	LHRH analogues as anticancer agents: pituitary and extrapituitary sites of action. Expert Opinion on Investigational Drugs, 2001, 10, 709-720.	4.1	90
57	The Luteinizing Hormone-Releasing Hormone Receptor in Human Prostate Cancer Cells: Messenger Ribonucleic Acid Expression, Molecular Size, and Signal Transduction Pathway1. Endocrinology, 1999, 140, 5250-5256.	2.8	123
58	The Luteinizing Hormone-Releasing Hormone Receptor in Human Prostate Cancer Cells: Messenger Ribonucleic Acid Expression, Molecular Size, and Signal Transduction Pathway. Endocrinology, 1999, 140, 5250-5256.	2.8	30
59	Growth-inhibitory effects of luteinizing hormone-releasing hormone (LHRH) agonists on xenografts of the DU 145 human androgen-independent prostate cancer cell line in nude mice. International Journal of Cancer, 1998, 76, 506-511.	5.1	42
60	Growth factors in steroid-responsive prostatic tumor cells. Steroids, 1996, 61, 222-225.	1.8	7
61	LH-RH and Somatostatin: Examples of Peptidergic Control of Prostate Cancer Growth. Contributions To Oncology / Beitrage Zur Onkologie, 1995, 50, 332-344.	0.1	0
62	Growth of the androgen-dependent tumor of the prostate: Role of androgens and of locally expressed growth modulatory factors. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 401-405.	2.5	20
63	Effects of steroids on the brain opioid system. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 343-348.	2.5	71
64	Effect of aging on opioid and LHRH receptors in the brain, pituitary, and testis of the male rat. Neurobiology of Aging, 1994, 15, 553-557.	3.1	6
65	Androgen-dependent prostatic tumors: biosynthesis and possible actions of LHRH. Journal of Steroid Biochemistry and Molecular Biology, 1994, 49, 347-350.	2.5	15
66	Characterization of a soluble LHRH-degrading activity in the rat ventral prostate. Prostate, 1993, 23, 315-328.	2.3	9
67	Binding Characteristics of Hypothalamic Mu Opioid Receptors throughout the Estrous Cycle in the Rat. Neuroendocrinology, 1993, 58, 366-372.	2.5	79
68	Conadotropin-releasing hormone agonists suppress melanoma cell motility and invasiveness through the inhibition of α3 integrin and MMP-2 expression and activity. International Journal of Oncology, 1992, 33, 405.	3.3	7
69	Modulation of the binding characteristics of hypothalamic mu opioid receptors in rats by gonadal steroids. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 113-121.	2.5	22
70	Testosterone and postnatal ontogenesis of hypothalamic μ ([3H]dihydromorphine) opioid receptors in the rat. Developmental Brain Research, 1991, 62, 131-136.	1.7	20
71	Hypothalamic Opiatergic Tone During Pregnancy, Parturition and Lactation in the Rat. Neuroendocrinology, 1991, 53, 460-466.	2.5	65
72	Effect of ovarian steroids on the concentration of μ opiate receptors in different regions of the brain of the female rat. Pharmacological Research, 1989, 21, 91-92.	7.1	13

PATRIZIA LIMONTA

#	ARTICLE	IF	CITATIONS
73	Distribution of kappa opioid receptors in the brain of young and old male rats. Life Sciences, 1989, 45, 2085-2092.	4.3	22
74	Effects of aging on pituitary and testicular luteinizing hormone-releasing hormone receptors in the rat. Life Sciences, 1988, 42, 335-342.	4.3	13
75	Further Evidence that Gonadal Steroids do not Modulate Brain Opiate Receptors in Male Rats Endocrinologia Japonica, 1987, 34, 521-529.	0.5	11
76	Decrease of mu opioid receptors in the brain and in the hypothalamus of the aged male rat. Life Sciences, 1987, 40, 391-398.	4.3	44
77	Stimulatory and Inhibitory Effects of the Opioids on Gonadotropin Secretion. Neuroendocrinology, 1986, 42, 504-512.	2.5	60
78	Species differences in the sensitivity to GnRH analogs. The Journal of Steroid Biochemistry, 1985, 23, 811-817.	1.1	13
79	Unexpected effects of nalmefene, a new opiate antagonist, on the hypothalamic-pituitary-gonadal axis in the male rat. Steroids, 1985, 46, 955-965.	1.8	14
80	Species differences in the sensitivity to a GnRH antagonist. Contraception, 1985, 32, 75-85.	1.5	5
81	Role of the subfornical organ (SFO) in the control of gonadotropin secretion. Brain Research, 1981, 229, 75-84.	2.2	23
82	Cholinergic inputs to the amygdala and the control of gonadotrophin release. European Journal of Endocrinology, 1980, 93, 1-6.	3.7	20
83	REPRODUCTIVE FUNCTION AND ANTITUMOR ACTIVITY: DIFFERENT ROLES FOR THE HYPOTHALAMIC HORMONE GnRH. Istituto Lombardo - Accademia Di Scienze E Lettere - Incontri Di Studio, 0, , .	0.0	Ο