Zhiqiang Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9705865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Scientific Reports, 2014, 4, 6200.	1.6	998
2	Promising properties and future trend of eutectic high entropy alloys. Scripta Materialia, 2020, 187, 202-209.	2.6	308
3	A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics, 2017, 91, 124-128.	1.8	203
4	Effect of Niobium on Microstructure and Properties of the CoCrFeNb x Ni High Entropy Alloys. Journal of Materials Science and Technology, 2017, 33, 712-717.	5.6	180
5	A new strategy to design eutectic high-entropy alloys using simple mixture method. Materials and Design, 2018, 142, 101-105.	3.3	172
6	Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot. Intermetallics, 2014, 44, 37-43.	1.8	125
7	Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys. Journal of Alloys and Compounds, 2015, 650, 896-906.	2.8	106
8	Microstructure and Mechanical Properties of a CoFeNi2V0.5Nb0.75 Eutectic High Entropy Alloy in As-cast and Heat-treated Conditions. Journal of Materials Science and Technology, 2016, 32, 245-250.	5.6	94
9	Effects of Nb addition on structural evolution and properties of the CoFeNi2V0.5 high-entropy alloy. Applied Physics A: Materials Science and Processing, 2015, 119, 291-297.	1.1	93
10	Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding. Journal of Thermal Spray Technology, 2015, 24, 1333-1340.	1.6	76
11	Evolution of dendrite morphology of a binary alloy under an applied electric current: An <i>in situ</i> observation. Physical Review E, 2010, 81, 042601.	0.8	75
12	Mechanical Properties Improvement of AlCrFeNi2Ti0.5 High Entropy Alloy through Annealing Design and its Relationship with its Particle-reinforced Microstructures. Journal of Materials Science and Technology, 2015, 31, 397-402.	5.6	58
13	Microstructure Evolution and Wear Behavior of the Laser Cladded CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb High-Entropy Alloy Coatings. Journal of Thermal Spray Technology, 2016, 25, 806-814.	1.6	54
14	Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in seawater, NaCl solution and deionized water. Surface and Coatings Technology, 2020, 400, 126214.	2.2	54
15	The microstructure and property of Al–Si alloy and Al–Mn alloy bimetal prepared by continuous casting. Materials Letters, 2012, 67, 21-23.	1.3	51
16	Nanoparticle-Decorated Ultrathin La2O3 Nanosheets as an Efficient Electrocatalysis for Oxygen Evolution Reactions. Nano-Micro Letters, 2020, 12, 49.	14.4	51
17	A novel Co-free Al0.75CrFeNi eutectic high entropy alloy with superior mechanical properties. Journal of Alloys and Compounds, 2022, 902, 163814.	2.8	51
18	A promising structure for fabricating high strength and high electrical conductivity copper alloys. Scientific Reports, 2016, 6, 20799.	1.6	50

ZHIQIANG CAO

#	Article	IF	CITATIONS
19	Effects of Tungsten on Microstructure and Mechanical Properties of CrFeNiV0.5W x and CrFeNi2V0.5W x High-Entropy Alloys. Journal of Materials Engineering and Performance, 2015, 24, 4594-4600.	1.2	46
20	Synthesis and Characterization of AlCoCrFeNiNbx High-Entropy Alloy Coatings by Laser Cladding. Crystals, 2019, 9, 56.	1.0	46
21	Microstructures and Wear Resistance of AlCrFeNi2W0.2Nbx High-Entropy Alloy Coatings Prepared by Laser Cladding. Journal of Thermal Spray Technology, 2019, 28, 1318-1329.	1.6	31
22	Application of synchrotron radiation X-ray computed tomography to investigate the agglomerating behavior of TiB2 particles in aluminum. Journal of Alloys and Compounds, 2015, 622, 831-836.	2.8	29
23	Microstructures and Wear Resistance of CoCrFeNi2V0.5Tix High-Entropy Alloy Coatings Prepared by Laser Cladding. Crystals, 2020, 10, 352.	1.0	29
24	Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater. Journal of Materials Science and Technology, 2021, 85, 224-234.	5.6	26
25	Microstructure and Mechanical Properties Investigation of the CoCrFeNiNbx High Entropy Alloy Coatings. Crystals, 2018, 8, 409.	1.0	22
26	Effects of Ta Addition on the Microstructure and Mechanical Properties of CoCu0.5FeNi High-Entropy Alloy. Journal of Materials Engineering and Performance, 2019, 28, 7642-7648.	1.2	21
27	Real time investigation of the grain refinement dynamics in zinc alloy by synchrotron microradiography. Journal of Alloys and Compounds, 2015, 630, 60-67.	2.8	19
28	Effect of strontium addition on silicon phase and mechanical properties of Zn–27Al–3Si alloy. Journal of Alloys and Compounds, 2015, 622, 871-879.	2.8	17
29	In situ observation on the solidification of Sn-10Cu hyperperitectic alloy under direct current field by synchrotron microradiography. Journal of Alloys and Compounds, 2017, 721, 126-133.	2.8	17
30	Modification of the silicon phase and mechanical properties in Al-40Zn-6Si alloy with Eu addition. Materials and Design, 2020, 186, 108268.	3.3	17
31	The interaction between Eu and P in high purity Al-7Si alloys. Materials Characterization, 2016, 120, 129-142.	1.9	13
32	A promising new class of plasticine: Metallic plasticine. Journal of Materials Science and Technology, 2018, 34, 344-348.	5.6	13
33	Real time observation on the solidification of strontium-modified zinc–aluminum–silicon alloys by synchrotron microradiography. Journal of Alloys and Compounds, 2014, 608, 343-351.	2.8	12
34	Effects of Ni on the nucleation and growth behavior of Cu6Sn5 in Sn–8.5Cu alloy: An in situ observation. Journal of Alloys and Compounds, 2021, 862, 158603.	2.8	12
35	Effect of Eu on the silicon phase in Al-40Zn-5Si alloys. Journal of Alloys and Compounds, 2017, 722, 116-130.	2.8	9
36	The Influence of Holding Time on the Microstructure Evolution of Mg–10Zn–6.8Gd–4Y Alloy during Semi-Solid Isothermal Heat Treatment. Metals, 2019, 9, 420.	1.0	8

Zhiqiang Cao

#	Article	IF	CITATIONS
37	Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys. Acta Metallurgica Sinica (English Letters), 2020, 33, 1135-1144.	1.5	8
38	Microstructure and Wear Behavior of In Situ ZA27/TiB2 Composites. Metals, 2020, 10, 1663.	1.0	6
39	Effect of Sr addition on the characteristics of as-cast and rolled 3003/4004 clad aluminum. Journal of Alloys and Compounds, 2016, 678, 201-211.	2.8	5
40	Grain nucleation and growth behavior of (Cu, Ni)6Sn5 in Sn–10Cu–1Ni alloy under pulse current: An in situ observation. Materials Characterization, 2019, 158, 109969.	1.9	5
41	Different Influences of Rare Earth Eu Addition on Primary Si Refinement in Hypereutectic Al–Si Alloys with Varied Purity. Materials, 2019, 12, 3505.	1.3	5
42	Effect of CeO2 Nanoparticles on Interface of Cu/Al2O3 Ceramic Clad Composites. Materials, 2020, 13, 1240.	1.3	3
43	Bidirectional pulsed current effect on the precipitation behavior of Cu6Sn5: An in situ observation. Materials Today Communications, 2021, 29, 102825.	0.9	1
44	Synchrotron radiation micro-beam analysis of the effect of strontium on primary silicon in Zn–27Al–3Si alloy. Journal of Alloys and Compounds, 2018, 749, 575-579.	2.8	0

4